
Advanced Compilers M. Lam

Lecture 2

Introduction to Data Flow Analysis

I Introduction

II Example: Reaching definition analysis

III Example: Liveness Analysis

IV A General Framework
(Theory in next lecture)

 Reading: Chapter 9.2



Advanced Compilers  2 L2:Intro to data flow 

I. Compiler Organization

Program

Abstract
Syntax Tree

High-level
IR

Low-level
IR

...

Machine
code

Front end

High-level optimization

Low-level optimization

Register allocation
Instruction scheduling

Parallelization
Loop transformations

Redundancy elimination

Code generation

Machine-Independent
Intermediate

Representations



Advanced Compilers  3 L2:Intro to data flow 

Flow Graph

• Basic block = a maximal sequence of consecutive in structions 
s.t.

• flow of control only enters at the beginning
• flow of control can only leave at the end 

(no halting or branching except perhaps at end of block)

• Flow Graphs

• Nodes: basic blocks
• Edges

• Bi --> Bj, iff Bj can follow Bi immediately in some execution



Advanced Compilers  4 L2:Intro to data flow 

What is Data Flow Analysis?

• Data flow analysis: 

• Flow-sensitive: sensitive to the control flow in a function 

• intraprocedural analysis

• Examples of optimizations:

• Constant propagation

• Common subexpression elimination

• Dead code elimination

e=d+3

a=b+c

a=243

d=7

e=b+c

g=a

Value of x?
Which “definition” defines x?
Is the definition still meaningful (live)? 



Advanced Compilers  5 L2:Intro to data flow 

Static program vs. dynamic execution

• Statically:  Finite program

• Dynamically : Can have infinitely many possible execution paths 

• Data flow analysis abstraction: 

• For each static  point in the program: 
combines information of all the dynamic  instances of the same 
program point. 

• Example of a data flow question: 

• Which definition defines the value used in statement “b = a”?

a = 10

a = 11

if input()

b = a

exit

B1

B2

B3



Advanced Compilers  6 L2:Intro to data flow 

II. Reaching Definitions 

• Every assignment is a definition

• A definition  d reaches  a point p 
if there exists a  path from the point immediately following d  to  p 
such that d is not killed (overwritten) along that path. 

• Problem statement

• For each point in the program, determine
if each definition in the program reaches the point

• A bit vector per program point, vector-length = #defs

d3: x = 1 d5: z = x
d4: y = 2 d6: x = 4

d1: x = 10
d2: y = 11

if e

d0: y = 3B0

B1 B2



Advanced Compilers  7 L2:Intro to data flow 

Data Flow Analysis Schema

• Build a flow graph (nodes = basic blocks, edges = control flow)

• Set up a set of equations between in[b] and out[b] for all basic blocks b

• Effect of code in basic block: 
Transfer function fb relates in[b] and out[b], for same b

• Effect of flow of control: 
relates out[b1], in[b2] if b1 and b2 are adjacent

• Find a solution to the equations

f2

f1

f3

in[1]

out[1]

in[2]

out[2]

in[3]

out[3]
in[exit]

exit

entryout[entry]



Advanced Compilers  8 L2:Intro to data flow 

Effects of a Statement

• fs : A transfer function of a statement
abstracts the execution with respect to the problem of interest

• For a statement s (d: x = y + z)
out[s] = fs(in[s]) = Gen[s] U (in[s]-Kill[s])

• Gen[s]: definitions generated: Gen[s] = {d}

• Propagated definitions: in[s] - Kill[s], 
where Kill[s]=set of all other defs to x in the rest of program

in[B0]

out[B0]

d0: y = 3

d1: x = 10

d2: y = 11

fd0

fd1

fd2



Advanced Compilers  9 L2:Intro to data flow 

Effects of a Basic Block 

• Transfer function of a statement s: 
out[s] = fs(in[s]) = Gen[s] U (in[s]-Kill[s])

• Transfer function of a basic block B: 
Composition of transfer functions of statements in B

• out[B] = fB(in[B]) = fd2fd1fd0(in[B]) 
=Gen[d2] U (Gen[d1] U (Gen[d0] U (in[B]-Kill[d0]))-Kill[d1])) -Kill[d2]
= Gen[d2] U (Gen[d1] U (Gen[d0] - Kill[d1]) - Kill[d2]) U
  in[B] - (Kill[d0] U Kill[d1] U Kill[d2])

= Gen[B] U (in[B] - Kill[B])

• Gen[B]: locally exposed definitions (available at end of bb)

• Kill[B]: set of definitions killed by B

in[B0]

out[B0]

d0: y = 3

d1: x = 10

d2: y = 11

fd0

fd1

fd2

fB= fd2 o fd1 o fd0 



Advanced Compilers  10 L2:Intro to data flow 

Effects of the Edges (acyclic)

• Join node: a node with multiple predecessors

• meet  operator (∧): ∪
in[b] = out[p1] ∪ out[p2] ∪ ... ∪ out[pn], where

p1, ..., pn are predecessors of b

f2

f1

f3

in[1]

out[1]

in[2]

out[2]

in[3]

out[3]

in[exit]exit

entry
out[entry]



Advanced Compilers  11 L2:Intro to data flow 

Cyclic Graphs

• Equations still hold

• out[b] = fb(in[b])
• in[b] = out[p1] ∪ out[p2] ∪ ... ∪ out[pn], p1, ..., pn pred.

• Find: fixed point solution

d1: a = 10

d2: a = 11

if e

in[2]

in[3]

out[3]

out[2]
exit

in[exit]

in[1]

out[1]

out[entry]
entry



Advanced Compilers  12 L2:Intro to data flow 

Reaching Definitions: Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
OUT[Entry] =

// Initialization for iterative algorithm
For each basic block B other than Entry

 OUT[B] = 

// iterate 
While (changes to any OUT occur) {

For each basic block B other than Entry {
in[B] = ∪ (out[p]), for all predecessors p of B
out[B] = fB(in[B]) // out[B]=gen[B]∪(in[B]-kill[B])

}

∅

∅



Advanced Compilers  13 L2:Intro to data flow 

Summary of Reaching Definitions

Reaching Definitions

Domain Sets of definitions

Transfer function fb(x) forward: out[b] = fb(in[b])
fb(x) = Genb ∪ (x -Killb)

Genb: definitions in b

Killb: killed defs

Meet Operation in[b]= ∪ out[predecessors]

Boundary Condition out[entry] = 

Initial interior points out[b] = 
∅

∅



Advanced Compilers  14 L2:Intro to data flow 

III. Live Variable Analysis

• Definition

• A variable v is live  at point p 
if the value of v is used 
along some path in the flow graph starting at p. 

• Otherwise, the variable is dead .

• Problem statement

• For each basic block b, 

• determine if each variable is live at the start/end point of b

• Size of bit vector: one bit for each variable



Advanced Compilers  15 L2:Intro to data flow 

Effects of a Basic Block (Transfer Function)

• Observation:Trace uses back to the definitions

• Direction: backward: in[b] = fb(out[b])

• Transfer function  for statement s: x = y + z

• generate live variables: Use[s] = {y, z}

• propagate live variables: out[s] - Def[s], Def[s] = x

• in[s] = Use[s] ∪ (out(s)-Def[s])

• Transfer function  for basic block b: 

• in[b] = Use[b] ∪ (out(b)-Def[b])

• Use[b], set of locally exposed uses in b, 
uses not covered by definitions in b

• Def[b]= set of variables defined in b.b.

use

def

def

b

in[b]

out[b]

fb

= fb(out[b])

m = n+q
p = m

example:



Advanced Compilers  16 L2:Intro to data flow 

Across Basic Blocks

• Meet operator ( ∧): 

• out[b] = in[s1] ∪ in[s2] ∪ ... ∪ in[sn], s1, ..., sn are successors of b

• Boundary condition: 



Advanced Compilers  17 L2:Intro to data flow 

Example

in[1]

out[1]

in[2]

out[2]

in[3]

out[3]

entryout[entry]

in[exit]
exit

m = n+q
p = mr = n+r

n = p
if g



Advanced Compilers  18 L2:Intro to data flow 

Liveness: Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
IN[Exit] =

// Initialization for iterative algorithm
For each basic block B other than Exit

 IN[B] = 

// iterate 
While (changes to any IN occur) {

For each basic block B other than Exit {
out[B] = ∪ (in[s]), for all successors of B
in[B] = fB(out[B]) // in[B]=Use[B]∪(out[B]-Def[B])

}

∅

∅



Advanced Compilers  19 L2:Intro to data flow 

IV. Framework

Reaching Definitions Live Variables

Domain Sets of definitions Sets of variables

Direction forward:
out[b] = fb(in[b])
in[b] = ∧ out[pred(b)]

backward: 
in[b] = fb(out[b])
out[b] = ∧ in[succ(b)]

Transfer function fb(x) = Genb ∪ (x -Killb) fb(x) = Useb ∪ (x -Defb)

Meet Operator (∧) ∪ ∪ 

Boundary Condi-
tion

out[entry] = in[exit] = 

Initial
Interior points

out[b] = in[b] = 

∅ ∅

∅ ∅



Advanced Compilers  20 L2:Intro to data flow 

Thought Problem 1. “Must-Reach” Definitions

• A definition D (a = b+c) must  reach point P iff 

• D appears at least once along on all paths leading to P 

• a is not redefined along any path after last appearance of D and 
before P

• How do we formulate the data flow algorithm for th is problem?



Advanced Compilers  21 L2:Intro to data flow 

Problem 2: A legal solution to (May) Reaching Def?

• Will the worklist algorithm generate this answer?

exit

entry

d1: b = 1

in[2]={d1}

out[2]={d1}

in[exit]

in[1]={}

out[1]={}

out[entry]={}

in[3]={d1}

out[3]={d1}



Advanced Compilers  22 L2:Intro to data flow 

Problem 3. What are the algorithm properties?

• Correctness 

• Precision: how good is the answer?

• Convergence: will the analysis terminate?

• Speed: how long does it take?


