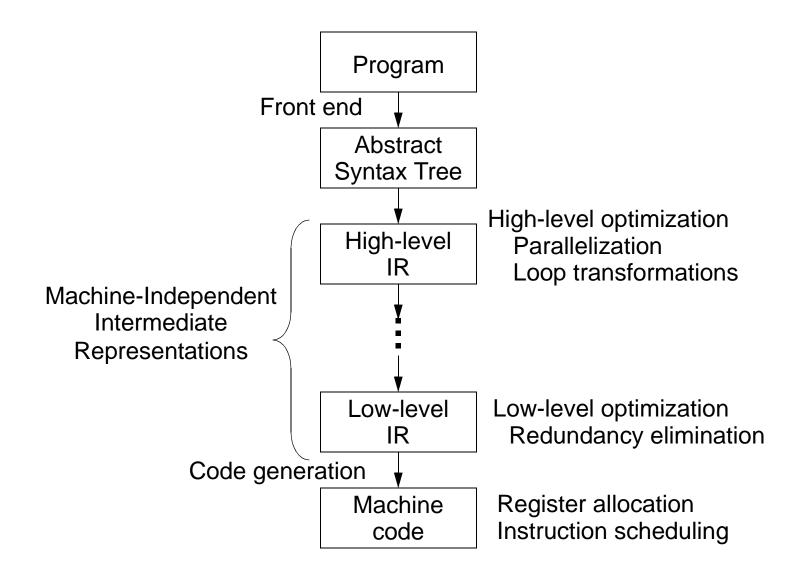
Lecture 2

Introduction to Data Flow Analysis

- I Introduction
- II Example: Reaching definition analysis
- III Example: Liveness Analysis
- IV A General Framework (Theory in next lecture)

Reading: Chapter 9.2

I. Compiler Organization



Flow Graph

- Basic block = a maximal sequence of consecutive instructions s.t.
 - flow of control only enters at the beginning
 - flow of control can only leave at the end (no halting or branching except perhaps at end of block)

• Flow Graphs

- Nodes: basic blocks
- Edges
 - $B_i \rightarrow B_j$, iff B_j can follow B_i immediately in some execution

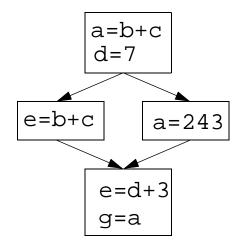
What is Data Flow Analysis?

• Data flow analysis:

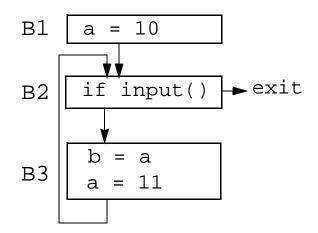
- Flow-sensitive: sensitive to the control flow in a function
- intraprocedural analysis

• Examples of optimizations:

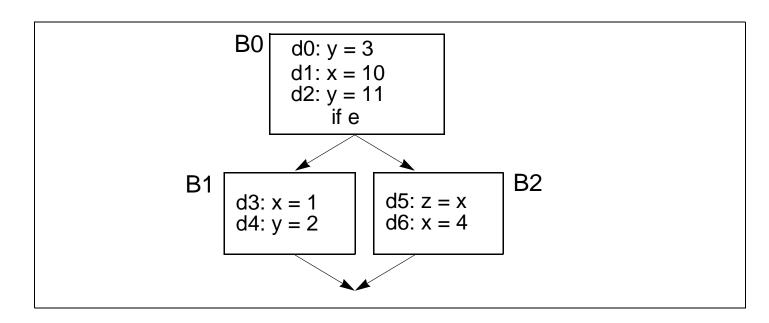
- Constant propagation
- Common subexpression elimination
- Dead code elimination



Value of x? Which "definition" defines x? Is the definition still meaningful (live)?

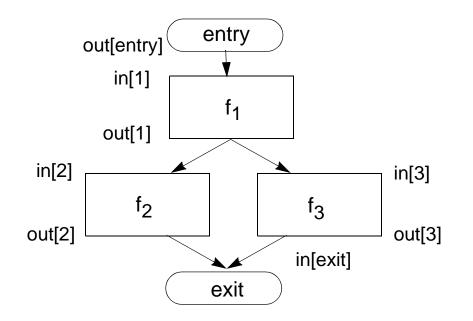


- Statically: Finite program
- **Dynamically**: Can have infinitely many possible execution paths
- Data flow analysis abstraction:
 - For each static point in the program: combines information of all the dynamic instances of the same program point.
- Example of a data flow question:
 - Which definition defines the value used in statement "b = a"?

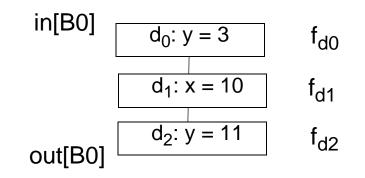


- Every assignment is a definition
- A definition *d* reaches a point *p* if there exists a path from the point immediately following *d* to *p* such that *d* is not killed (overwritten) along that path.
- Problem statement
 - For each point in the program, determine if each definition in the program reaches the point
 - A bit vector per program point, vector-length = #defs

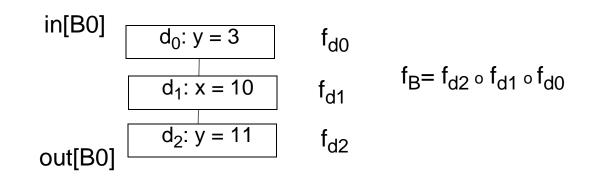
Data Flow Analysis Schema



- Build a flow graph (nodes = basic blocks, edges = control flow)
- Set up a set of equations between in[b] and out[b] for all basic blocks b
 - Effect of code in basic block: Transfer function f_b relates in[b] and out[b], for same b
 - Effect of flow of control: relates out[b₁], in[b₂] if b₁ and b₂ are adjacent
- Find a solution to the equations



- f_s: A transfer function of a statement abstracts the execution with respect to the problem of interest
- For a statement s (d: x = y + z) out[s] = f_s(in[s]) = Gen[s] U (in[s]-Kill[s])
 - **Gen[s]:** definitions generated: Gen[s] = {d}
 - Propagated definitions: in[s] Kill[s], where Kill[s]=set of all other defs to x in the rest of program



• Transfer function of a statement s:

 $out[s] = f_s(in[s]) = Gen[s] U (in[s]-Kill[s])$

Transfer function of a basic block B:

Composition of transfer functions of statements in B

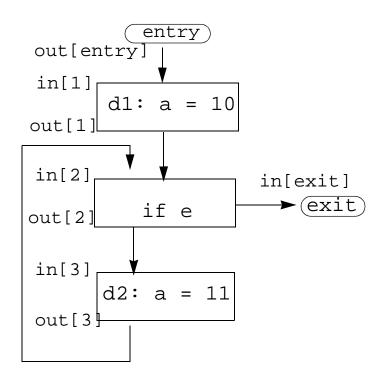
- $out[B] = f_B(in[B]) = f_{d2}f_{d1}f_{d0}(in[B])$
 - =Gen[d₂] U (Gen[d₁] U (Gen[d₀] U (in[B]-Kill[d₀]))-Kill[d₁])) -Kill[d₂]
 - = Gen[d₂] U (Gen[d₁] U (Gen[d₀] Kill[d₁]) Kill[d₂]) U in[B] - (Kill[d₀] U Kill[d₁] U Kill[d₂])
 - = Gen[B] U (in[B] Kill[B])
 - Gen[B]: locally exposed definitions (available at end of bb)
 - Kill[B]: set of definitions killed by B



• Join node: a node with multiple predecessors

• meet operator (
$$\land$$
): \cup
in[b] = out[p₁] \cup out[p₂] $\cup ... \cup$ out[p_n], where
p₁, ..., p_n are predecessors of b

Cyclic Graphs



- Equations still hold
 - $out[b] = f_b(in[b])$
 - in[b] = out[p₁] \cup out[p₂] \cup ... \cup out[p_n], p₁, ..., p_n pred.
- Find: fixed point solution

Reaching Definitions: Iterative Algorithm

```
input: control flow graph CFG = (N, E, Entry, Exit)
// Boundary condition
 OUT[Entry] = \emptyset
// Initialization for iterative algorithm
 For each basic block B other than Entry
     OUT[B] = \emptyset
// iterate
 While (changes to any OUT occur) {
    For each basic block B other than Entry {
        in[B] = \cup (out[p]), for all predecessors p of B
        out[B] = f_B(in[B]) / / out[B]=gen[B] \cup (in[B]-kill[B])
     }
```

Summary of Reaching Definitions

	Reaching Definitions	
Domain	Sets of definitions	
Transfer function f _b (x)	forward: out[b] = $f_b(in[b])$ $f_b(x) = Gen_b \cup (x - Kill_b)$	
	Gen _b : definitions in b	
	Kill _b : killed defs	
Meet Operation	in[b]= <pre>out[predecessors]</pre>	
Boundary Condition	$out[entry] = \emptyset$	
Initial interior points	out[b] = Ø	

III. Live Variable Analysis

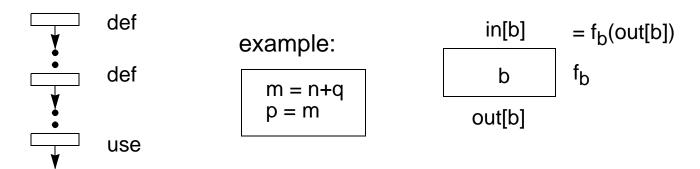
• Definition

- A variable v is live at point p if the value of v is used along some path in the flow graph starting at p.
- Otherwise, the variable is **dead**.

• Problem statement

- For each basic block b,
 - determine if each variable is live at the start/end point of b
- Size of bit vector: one bit for each variable

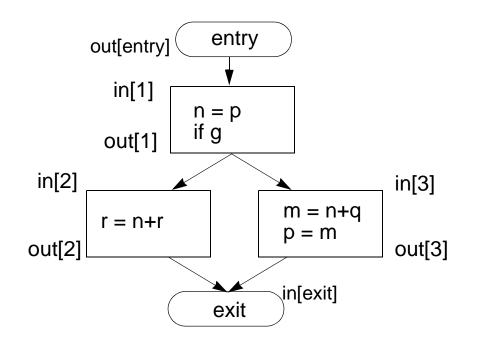
• Observation:Trace uses back to the definitions



- **Direction: backward:** in[b] = f_b(out[b])
- **Transfer function** for statement s: x = y + z
 - generate live variables: Use[s] = {y, z}
 - propagate live variables: out[s] Def[s], Def[s] = x
 - in[s] = Use[s] ∪ (out(s)-Def[s])
- Transfer function for basic block b:
 - in[b] = Use[b] ∪ (out(b)-Def[b])
 - Use[b], set of locally exposed uses in b, uses not covered by definitions in b
 - Def[b]= set of variables defined in b.b.

- Meet operator (^):
 - out[b] = in[s₁] \cup in[s₂] $\cup ... \cup$ in[s_n], s₁, ..., s_n are successors of b
- Boundary condition:

Example



Liveness: Iterative Algorithm

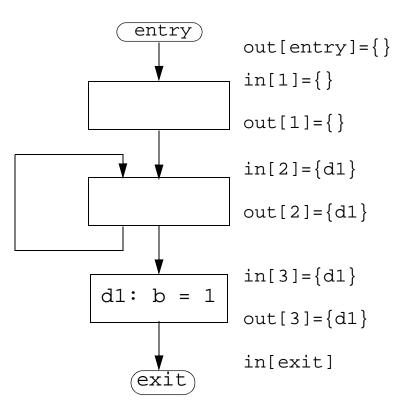
```
input: control flow graph CFG = (N, E, Entry, Exit)
// Boundary condition
  IN[Exit] = \emptyset
// Initialization for iterative algorithm
 For each basic block B other than Exit
      IN[B] = \emptyset
// iterate
 While (changes to any IN occur) {
    For each basic block B other than Exit {
        out[B] = \cup (in[s]), for all successors of B
        in[B] = f_B(out[B]) // in[B]=Use[B] \cup (out[B]-Def[B])
     }
```

	Reaching Definitions	Live Variables
Domain	Sets of definitions	Sets of variables
Direction	forward: out[b] = f _b (in[b]) in[b] = ^ out[pred(b)]	backward: in[b] = f _b (out[b]) out[b] = ^ in[succ(b)]
Transfer function	$f_{b}(x) = Gen_{b} \cup (x - Kill_{b})$	$f_b(x) = Use_b \cup (x \ -Def_b)$
Meet Operator (^)	U	U
Boundary Condi- tion	$out[entry] = \emptyset$	$in[exit] = \emptyset$
Initial Interior points	out[b] = Ø	in[b] = Ø

Thought Problem 1. "Must-Reach" Definitions

- A definition D (a = b+c) <u>must</u> reach point P iff
 - D appears at least once along on all paths leading to P
 - a is not redefined along any path after last appearance of D and before P
- How do we formulate the data flow algorithm for this problem?

Problem 2: A legal solution to (May) Reaching Def?



• Will the worklist algorithm generate this answer?

Problem 3. What are the algorithm properties?

• Correctness

• Precision: how good is the answer?

• Convergence: will the analysis terminate?

• Speed: how long does it take?