Lecture 3

Foundation of Data Flow Analysis

- I Semi-lattice (set of values, meet operator)
- II Transfer functions
- III Correctness, precision and convergence
- IV Meaning of Data Flow Solution

Reading: Chapter 9.3

Advanced Compilers

M. Lam

I. Purpose of a Framework

• Purpose 1

- · Prove properties of entire family of problems once and for all
 - Will the program converge?
 - What does the solution to the set of equations mean?

• Purpose 2:

• Aid in software engineering: re-use code

• Data-flow problems (F, V, $\wedge)$ are defined by

- A semilattice
 - domain of values (V)
 - meet operator (^)
- A family of transfer functions (F: V \rightarrow V)

Advanced Compilers

L3:Foundation of Data Flow Analysis

Semi-lattice: Structure of the Domain of Values

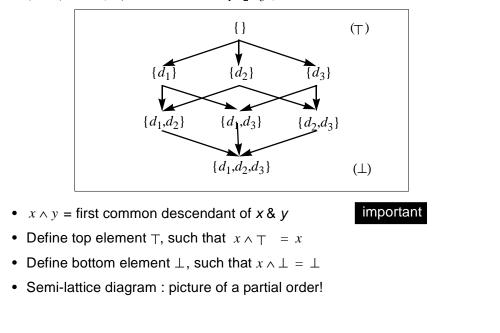
4

3

- A semi-lattice S = < a set of values V, a meet operator \land >
- Properties of the meet operator
 - idempotent: $x \land x = x$
 - commutative: $x \land y = y \land x$
 - associative: $x \land (y \land z) = (x \land y) \land z$
- Examples of meet operators ?
- Non-examples ?

Example of A Semi-Lattice Diagram

• (V, \land) : V = { x | such that $x \subseteq \{d_1, d_2, d_3\}\}, \land = \bigcirc$



Advanced Compilers

L3:Foundation of Data Flow Analysis

A Meet Operator Defines a Partial Order (vice versa)

5

• **Definition of partial order** \leq : $x \leq y$ if and only if $x \wedge y = x$

 $\begin{array}{cccc}
y \\
\text{tr} \\
x \\
x
\end{array} \equiv (x \land y = x) \equiv (x \le y)$

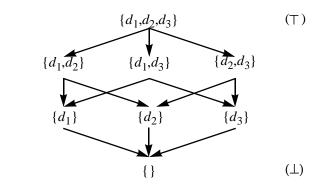
- Properties of meet operator guarantee that \leq is a partial order
 - Reflexive: $x \le x$
 - Antisymmetric: if $x \le y$ and $y \le x$ then x = y
 - Transitive: if $x \le y$ and $y \le z$ then $x \le z$
- $(x < y) \equiv (x \le y) \land (x \ne y)$
- A semi-lattice diagram:
 - Set of nodes: set of values
 - Set of edges {(y, x): x < y and $\neg \exists z$ s.t. $(x < z) \land (z < y)$ }
- Example:
 - Meet operator: ∪ Partial order ≤ :

Advanced Compilers

- Three ways to define a semi-lattice:
 - Set of values + meet operator
 - idempotent: $x \wedge x = -x$
 - commutative: $x \land y = y \land x$
 - associative: $x \land (y \land z) = (x \land y) \land z$
 - · Set of values + partial order
 - Reflexive: $x \le x$
 - Antisymmetric: if $x \le y$ and $y \le x$ then x = y
 - Transitive: if $x \le y$ and $y \le z$ then $x \le z$
 - A semi-lattice diagram
 - No cycles
 - T is on top of everything
 - \perp is at the bottom of everything

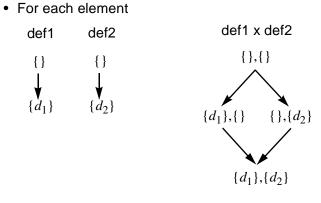
Another Example

- Semi-lattice
 - $V = \{x \mid \text{such that } x \subseteq \{ d_1, d_2, d_3\} \}$
 - ∧ = ∩



• \leq is

- A semi-lattice for data flow problems can get quite large: 2ⁿ elements for n var/definition
- A useful technique:
 - define semi-lattice for 1 element
 - · product of semi-lattices for all elements
- Example: Union of definitions



• $< x_1, x_2 > \le < y_1, y_2 > \text{ iff } x_1 \le y_1 \text{ and } x_2 \le y_2$

Advanced Compilers

Descending Chain

- Definition
 - The height of a lattice is the largest number of > relations that will fit in a descending chain.

 $x_0 > x_1 > \dots$

- Height of values in reaching definitions?
- Important property: finite descending chains

L3:Foundation of Data Flow Analysis

- A family of transfer functions F
- Basic Properties $f: V \rightarrow V$
 - · Has an identity function
 - $\exists f$ such that f(x) = x, for all x.
 - · Closed under composition
 - if $f_1, f_2 \in F$, $f_1 \bullet f_2 \in F$

Advanced Compilers

11

L3:Foundation of Data Flow Analysis

Monotonicity: 2 Equivalent Definitions

- A framework (F, V, ^) is monotone iff
 - $x \le y$ implies $f(x) \le f(y)$
- Equivalently,
 - a framework (F, V, \land) is monotone iff
 - $f(x \wedge y) \leq f(x) \wedge f(y)$,
 - meet inputs, then apply f
 - \leq

apply *f* individually to inputs, then meet results

Example

- Reaching definitions: $f(x) = Gen \cup (x Kill), \land = \cup$
 - Definition 1:
 - Let $\mathbf{x}_1 \leq \mathbf{x}_2$,

 $f(x_1)$: Gen \cup (x₁ - Kill)

 $f(x_2)$: Gen \cup (x_2 - Kill)

• Definition 2:

•
$$f(x_1 \land x_2) = (Gen \cup ((x_1 \cup x_2) - Kill))$$

 $f(x_1) \land f(x_2) = (Gen \cup (x_1 - Kill)) \cup (Gen \cup (x_2 - Kill))$

Advanced Compilers

13

L3:Foundation of Data Flow Analysis

Important Note

- Monotone framework **does not mean** that $f(x) \le x$
 - e.g. Reaching definition for two definitions in program
 - suppose: f: Gen = {d₁} ; Kill = {d₂}

• A framework (F, V, ^) is distributive if and only if

• $f(x \wedge y) = f(x) \wedge f(y)$,

meet input, then apply f is **equal to** apply the transfer function individually then merge result

Advanced Compilers

15

L3:Foundation of Data Flow Analysis

III. Properties of Iterative Algorithm

- Given:
 - And monotone data flow framework
 - Finite descending chain
 - \Rightarrow Converges
- Initialization of interior points to T
 - \Rightarrow Maximum Fixed Point (MFP) solution of equations

Behavior of iterative algorithm (intuitive)

For each IN/OUT of an interior program point:

- Its value cannot go up (new value ≤ old value) during algorithm
- Start with T (largest value)
- Proof by induction
 - Apply 1st transfer function / meet operator ≤ old value (T)
 - Inputs to "meet" change (get smaller)
 - since inputs get smaller, new output \leq old output
 - Inputs to transfer functions change (get smaller)
 - monotonicity of transfer function: since input gets smaller, new output ≤ old output
- · Algorithm iterates until equations are satisfied
- Values do not come down unless some constraints drive them down.
- · Therefore, finds the largest solution that satisfies the equations

Advanced Compilers

L3:Foundation of Data Flow Analysis

IV. What Does the Solution Mean?

17

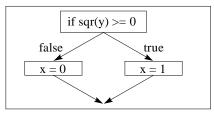
• IDEAL data flow solution

• Let $f_1, ..., f_m : \in F$, f_i is the transfer function for node i

 $f_p = f_{n_k} \bullet \dots \bullet f_{n_1}$, *p* is a path through nodes n_1, \dots, n_k

 f_p = identify function, if *p* is an empty path

- For each node n: ^ f_{pi} (boundary value), for <u>all possibly executed paths</u> p_i reaching n
- Example



• Determining all possibly executed paths is undecidable

• Err in the conservative direction

• Meet-Over-Paths MOP

- Assume every edge is traversed
- For each node *n*:

 $MOP(n) = \wedge f_{p_i}$ (boundary value), for all paths p_i reaching n

• Compare MOP with IDEAL

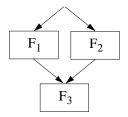
- MOP includes more paths than IDEAL
- MOP = IDEAL Result(Unexecuted-Paths)
- $MOP \leq IDEAL$
- MOP is a "smaller" solution, more conservative, safe
- Data Flow Solution \leq MOP \leq IDEAL
 - as close to MOP from below as possible

Advanced Compilers

Solving Data Flow Equations

19

• What is the difference between MOP and MFP of data flow equations?



• Therefore

- $FP \le MFP \le MOP \le IDEAL$
- FP, MFP, MOP are safe
- If framework is distributive, FP ≤ MFP = MOP ≤ IDEAL

```
Advanced Compilers
```

L3:Foundation of Data Flow Analysis

• A data flow framework

- Semi-lattice
 - set of values (top)
 - meet operator
 - finite descending chains?
- Transfer functions
 - summarizes each basic block
 - boundary conditions

• Properties of data flow framework:

- · monotone framework and finite descending chains
 - \Rightarrow iterative algorithm converges
 - \Rightarrow finds maximum fixed point (MFP)
 - \Rightarrow FP \leq MFP \leq MOP \leq IDEAL
- distributive framework
 ⇒ FP ≤ MFP = MOP ≤ IDEAL

Advanced Compilers

21

L3:Foundation of Data Flow Analysis