Lecture 3

Foundation of Data Flow Analysis

- I Semi-lattice (set of values, meet operator)
- II Transfer functions
- III Correctness, precision and convergence
- IV Meaning of Data Flow Solution

Reading: Chapter 9.3

Advanced Compilers M. Lam

I. Purpose of a Framework

• Purpose 1

- Prove properties of entire family of problems once and for all
 - Will the program converge?
 - What does the solution to the set of equations mean?

• Purpose 2:

• Aid in software engineering: re-use code

The Data-Flow Framework

- Data-flow problems (F, V, ∧) are defined by
 - A semilattice
 - domain of values (V)
 - meet operator (^)
 - A family of transfer functions (F: V → V)

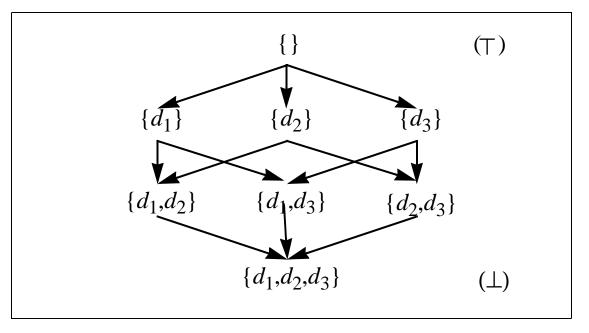
Semi-lattice: Structure of the Domain of Values

- A semi-lattice S = < a set of values V, a meet operator ∧ >
- Properties of the meet operator
 - idempotent: $x \wedge x = x$
 - commutative: $x \wedge y = y \wedge x$
 - associative: $x \wedge (y \wedge z) = (x \wedge y) \wedge z$

- Examples of meet operators ?
- Non-examples ?

Example of A Semi-Lattice Diagram

• $(V, \land) : V = \{x \mid \text{such that } x \subseteq \{d_1, d_2, d_3\}\}, \land = \bigcirc$



• $x \wedge y =$ first common descendant of x & y

important

- Define top element \top , such that $x \wedge \top = x$
- Define bottom element \bot , such that $x \land \bot = \bot$
- Semi-lattice diagram : picture of a partial order!

5

A Meet Operator Defines a Partial Order (vice versa)

• **Definition of partial order** \leq : $x \leq y$ if and only if $x \wedge y = x$

$$\begin{array}{c|c}
y \\
\downarrow \\
X
\end{array} \equiv (x \land y = x) \equiv (x \le y)$$

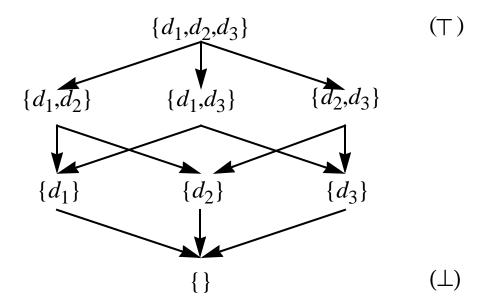
- Properties of meet operator guarantee that ≤ is a partial order
 - Reflexive: $x \le x$
 - Antisymmetric: if $x \le y$ and $y \le x$ then x = y
 - Transitive: if $x \le y$ and $y \le z$ then $x \le z$
- $(x < y) \equiv (x \le y) \land (x \ne y)$
- A semi-lattice diagram:
 - Set of nodes: set of values
 - Set of edges $\{(y, x): x < y \text{ and } \neg \exists z \text{ s.t. } (x < z) \land (z < y) \}$
- Example:
 - Meet operator:
 ∪ Partial order
 ≤:

Summary

- Three ways to define a semi-lattice:
 - Set of values + meet operator
 - idempotent: $x \wedge x = x$
 - commutative: $x \wedge y = y \wedge x$
 - associative: $x \wedge (y \wedge z) = (x \wedge y) \wedge z$
 - Set of values + partial order
 - Reflexive: $x \le x$
 - Antisymmetric: if $x \le y$ and $y \le x$ then x = y
 - Transitive: if $x \le y$ and $y \le z$ then $x \le z$
 - A semi-lattice diagram
 - No cycles
 - ⊤ is on top of everything
 - ⊥ is at the bottom of everything

Another Example

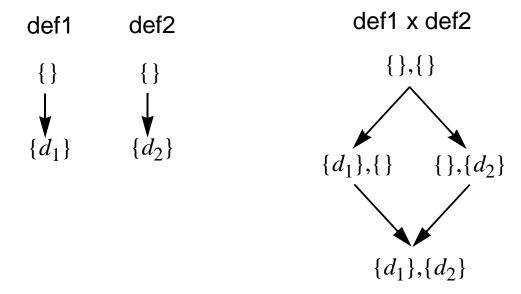
- Semi-lattice
 - $V = \{x \mid \text{ such that } x \subseteq \{ d_1, d_2, d_3 \} \}$
 - ∧ **=** ∩



• ≤ is

One Element at a Time

- A semi-lattice for data flow problems can get quite large:
 2ⁿ elements for n var/definition
- A useful technique:
 - define semi-lattice for 1 element
 - product of semi-lattices for all elements
- Example: Union of definitions
 - For each element



• $\langle x_1, x_2 \rangle \leq \langle y_1, y_2 \rangle$ iff $x_1 \leq y_1$ and $x_2 \leq y_2$

Descending Chain

- Definition
 - The **height** of a lattice is the largest number of > relations that will fit in a descending chain.

$$x_0 > x_1 > \dots$$

- Height of values in reaching definitions?
- Important property: finite descending chains

II. Transfer Functions

- A family of transfer functions *F*
- Basic Properties $f: V \rightarrow V$
 - Has an identity function
 - $\exists f$ such that f(x) = x, for all x.
 - Closed under composition
 - if $f_1, f_2 \in F$, $f_1 \bullet f_2 \in F$

Monotonicity: 2 Equivalent Definitions

- A framework (F, V, ∧) is monotone iff
 - $x \le y$ implies $f(x) \le f(y)$

- Equivalently,
 a framework (F, V, ∧) is monotone iff
 - $f(x \wedge y) \le f(x) \wedge f(y)$,
 - meet inputs, then apply *f* ≤
 apply *f* individually to inputs, then meet results

Example

- Reaching definitions: $f(x) = Gen \cup (x Kill), \land = \cup$
 - Definition 1:
 - Let $x_1 \le x_2$,

$$f(x_1)$$
: Gen \cup $(x_1 - Kill)$

$$f(x_2)$$
: Gen \cup $(x_2$ - Kill)

- Definition 2:
 - $f(x_1 \land x_2) = (Gen \cup ((x_1 \cup x_2) Kill))$

$$f(x_1) \wedge f(x_2) = (Gen \cup (x_1 - Kill)) \cup (Gen \cup (x_2 - Kill))$$

Important Note

- Monotone framework **does not mean** that $f(x) \le x$
 - e.g. Reaching definition for two definitions in program
 - suppose: f: Gen = {d₁}; Kill = {d₂}

Distributivity

- A framework (F, V, \wedge) is distributive if and only if
 - $f(x \wedge y) = f(x) \wedge f(y)$,

meet input, then apply f is **equal to** apply the transfer function individually then merge result

III. Properties of Iterative Algorithm

• Given:

- A and monotone data flow framework
- Finite descending chain
- ⇒ Converges
- Initialization of interior points to T
 - → Maximum Fixed Point (MFP) solution of equations

Behavior of iterative algorithm (intuitive)

For each IN/OUT of an interior program point:

- Its value cannot go up (new value ≤ old value) during algorithm
- Start with T (largest value)
- Proof by induction
 - Apply 1st transfer function / meet operator ≤ old value (T)
 - Inputs to "meet" change (get smaller)
 - since inputs get smaller, new output ≤ old output
 - Inputs to transfer functions change (get smaller)
 - monotonicity of transfer function:
 since input gets smaller, new output ≤ old output
- Algorithm iterates until equations are satisfied
- Values do not come down unless some constraints drive them down.
- Therefore, finds the largest solution that satisfies the equations

IV. What Does the Solution Mean?

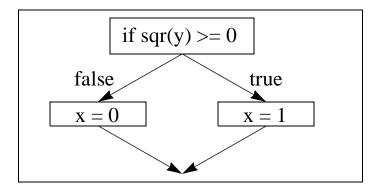
IDEAL data flow solution

• Let $f_1, ..., f_m : \in F$, f_i is the transfer function for node i

$$f_p = f_{n_k} \bullet \dots \bullet f_{n_1}$$
, p is a path through nodes n_1, \dots, n_k

 f_p = identify function, if P is an empty path

- For each node $n: \land f_{p_i}$ (boundary value), for all possibly executed paths p_i reaching n
- Example



Determining all possibly executed paths is undecidable

Meet-Over-Paths MOP

Err in the conservative direction

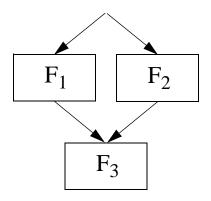
- Meet-Over-Paths MOP
 - Assume every edge is traversed
 - For each node *n*:

 $MOP(n) = \wedge f_{p_i}$ (boundary value), for all paths p_i reaching n

- Compare MOP with IDEAL
 - MOP includes more paths than IDEAL
 - MOP = IDEAL \(\times \) Result(Unexecuted-Paths)
 - MOP ≤ IDEAL
 - MOP is a "smaller" solution, more conservative, safe
- Data Flow Solution ≤ MOP ≤ IDEAL
 - as close to MOP from below as possible

Solving Data Flow Equations

 What is the difference between MOP and MFP of data flow equations?



Therefore

- FP ≤ MFP ≤ MOP ≤ IDEAL
- FP, MFP, MOP are safe
- If framework is distributive, FP ≤ MFP = MOP ≤ IDEAL

Summary

- A data flow framework
 - Semi-lattice
 - set of values (top)
 - meet operator
 - finite descending chains?
 - Transfer functions
 - summarizes each basic block
 - boundary conditions
- Properties of data flow framework:
 - monotone framework and finite descending chains
 - ⇒ iterative algorithm converges
 - ⇒ finds maximum fixed point (MFP)
 - \Rightarrow FP \leq MFP \leq MOP \leq IDEAL
 - distributive framework
 - \Rightarrow FP \leq MFP = MOP \leq IDEAL