Lecture 4

More on Data Flow: Constant Propagation Control Flow: Speed, Loops

- I Constant Propagation
- II Efficiency of Data Flow Analysis
- III Algorithm to find loops

Reading: Chapter 9.4, 9.6

I. Constant Propagation/Folding

• At every basic block boundary, for each variable v

- determine if v is a constant
- if so, what is the value?

- Finite domain?
- Finite height?

• Meet Operation:

v1	v2	v1 ∧ v2
undef	undef	undef
	C ₂	c ₂
	NAC	NAC
c ₁	undef	C ₁
	C ₂	c_1 , if $c_1 = c_2$ NAC otherwise
	NAC	NAC
NAC	undef	NAC
	C ₂	NAC
	NAC	NAC

• Note: undef \land c2 = c2!

Example

- Assume a basic block has only 1 instruction
- Let IN[b,x], OUT[b,x]
 - be the information for variable x at entry and exit of basic block b
- OUT[entry, x] = undef, for all x.
- Non-assignment instructions: OUT[b,x] = IN[b,x]
- Assignment instructions: (next page)

- Let an assignment be of the form $x_3 = x_1 + x_2$
 - + represents a generic operator
 - OUT[b,x] = IN [b,x], if $x \neq x_3$

IN[b,x ₁]	IN[b,x ₂]	OUT[b,x ₃]
undef	undef	
	c ₂	
	NAC	
c ₁	undef	
	c ₂	
	NAC	
NAC	undef	
	C ₂	
	NAC	

- Use: $x \le y$ implies $f(x) \le f(y)$ to check if framework is monotone
 - $[v_1 \ v_2 \dots] \leq [v_1' \ v_2' \dots], f([v_1 \ v_2 \dots]) \leq f([v_1 \ v_2 \dots])$

Distributive?

- A useful optimization
- Illustrates
 - abstract execution
 - an infinite semi-lattice
 - a non-distributive problem

- Assume forward data flow for this discussion
- Speed of convergence depends on the ordering of nodes

• How about:

Depth-first Ordering: Reverse Postorder

- Preorder traversal: visit the parent before its children
- Postorder traversal: visit the children then the parent
- Preferred ordering: reverse postorder
- Intuitively
 - depth first postorder visits the farthest node as early as possible
 - reverse postorder delays visiting farthest node

"Reverse Post-Order" Iterative Algorithm

```
input: control flow graph CFG = (N, E, Entry, Exit)
// Boundary condition
 OUT[Entry] = \emptyset
// Initialization for iterative algorithm
 For each basic block B other than Entry
     OUT[B] = \emptyset
// iterate
 While (changes to any OUT occur) {
    For each basic block B other than Entry
        in reverse post order {
        in[B] = \cup (out[p]), for all predecessors p of B
        out[B] = f_B(in[B]) / / out[B]=gen[B] \cup (in[B]-kill[B])
     }
```

Consideration in Speed of Convergence

Does it matter if we go around the same cycle multiple times?

- Cycles do not make a difference:
 - reaching definitions, liveness
- Cycles make a difference: constant propagation

- If cycles do not add info:
 - Labeling nodes in a path by their reverse postorder rank:
 1 -> 4 -> 5 -> 7 -> 2 -> 4 ...
 - info flows down nodes of increasing reverse postorder rank in 1 pass
- Loop depth = max. # of "retreating edges" in any acyclic path
- Maximum # iterations in data flow algorithm = Loop depth+2
 (2 is necessary even if there are no cycles)

Knuth's experiments show: average loop depth in real programs = 2.75

III. What is a Loop?

- Goal:
 - Define a loop in graph-theoretic terms (control flow graph)
 - Not sensitive to input syntax, a uniform treatment for all loops: DO, while, goto's
- Informally: A "natural" loop has
 - edges that form at least a cycle
 - a single entry point

- Node *d* dominates node *n* in a graph (*d* dom *n*) if every path from the start node to *n* goes through *d*
 - a node dominates itself

Immediate dominance:

d idom *n* : *d* dom *n*, $d \neq n$, $\neg \exists m$ s.t. *d* dom *m* and *m* dom *n*

• Immediate dominance relationships form a tree

• Definition

• Node *d* dominates node *n* in a graph (*d* dom *n*) if every path from the start node to *n* goes through *d*

• Formulated as a MOP problem

- node *d* lies on all possible paths reaching node $n \Rightarrow d \ dom \ n$
 - Direction:
 - Values:
 - Meet operator:
 - Top:
 - Bottom:
 - Boundary condition: start/exit node =
 - Finite descending chains only?
 - Transfer function:
- Speed:
- With reverse postorder, solution to most flow graphs (reducible flow graphs) found in 1 pass

Definition of Natural Loops

- Single entry-point: *header* (*d*) a header dominates all nodes in the loop
- A back edge (n → d) in a flow graph is an edge whose destination dominates its source (d dom n)
- The *natural loop of a back edge* (n → d) is
 d + { nodes that can reach n without going through d }.

Depth-first spanning tree

• Edges traversed in a depth-first search of a graph form a depth-first spanning tree

- Categorizing edges in graph
 - Advancing edges: from ancestor to proper descendant
 - Retreating edges: from descendant to ancestor (not necessarily proper)
 - Cross edges: all other edges

• Definition

• Back edge: $n \rightarrow d$, d dom n

• Relationships between graph edges and back edges

- a back edge must be a retreating edge dominator ⇒ visit *d* before *n*, *n* must be a descendant of *d*
- a retreating edge is not necessarily a back edge
- Most programs (all structured code, and most GOTO programs)
 - retreating edges = back edges

Constructing Natural Loops

- The *natural loop of a back edge* (n → d) is
 d + { nodes that can reach n without going through d }.
- Remove *d* from the flow graph, find all predecessors of *n*
- Example

• If two loops do not have the same header

- they are either disjoint, or
- one is entirely contained (nested within) the other
 -- inner loop, one that contains no other loop.

• If two loops share the same header

- Hard to tell which is the inner loop
- Combine as one

- Constant propagation
- Introduced the reverse postorder iterative algorithm
- Define loops in graph theoretic terms
- Definitions and algorithms for
 - Dominators
 - Back edges
 - Natural loops