
Advanced Compilers M. Lam

Lecture 4

More on Data Flow: 
Constant Propagation

Control Flow: Speed, Loops

I Constant Propagation

II Efficiency of Data Flow Analysis

III Algorithm to find loops

Reading: Chapter 9.4, 9.6
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I. Constant Propagation/Folding

• At every basic block boundary, for each variable v

• determine if v is a constant

• if so, what is the value?

e = 1

x = 2
m = x + e

e = 3

p = e + 4
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Semi-lattice Diagram

• Finite domain?

• Finite height? 
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Equivalent Definition

• Meet Operation: 

• Note: undef ∧ c2 = c2! 

v1 v2 v1 ∧ v2

undef
undef undef

c2 c2

NAC NAC

c1

undef c1

c2 c1, if c1= c2
NAC otherwise

NAC NAC

NAC
undef NAC

c2 NAC

NAC NAC
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Example

x = 2

p = x



Advanced Compilers  6 L4: Constants, Control Flow

Transfer Functions

• Assume a basic block has only 1 instruction 

• Let IN[b,x], OUT[b,x] 

• be the information for variable x at entry and exit of basic block b

• OUT[entry, x] = undef, for all x. 

• Non-assignment instructions: OUT[b,x] = IN[b,x] 

• Assignment instructions: (next page)
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Constant Propagation (Cont.)

• Let an assignment be of the form x 3 = x1 + x2

• + represents a generic operator

• OUT[b,x] = IN [b,x], if x ≠ x3

• Use:  implies  to check if framework is monotone

• [v1 v2 ... ] ≤ [v1’ v2’ ... ], f ([v1 v2 ... ]) ≤ f ([v1 v2 ... ])

IN[b,x1] IN[b,x2] OUT[b,x3]

undef
undef

c2

NAC

c1

undef

c2

NAC

NAC
undef

c2

NAC

x y≤ f x( ) f y( )≤
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Distributive?

x = 2
y = 3

x = 3
y = 2

z = x+y
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Summary of Constant Propagation

• A useful optimization

• Illustrates

• abstract execution

• an infinite semi-lattice

• a non-distributive problem
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II. Efficiency of Iterative Data Flow

• Assume forward data flow for this discussion

• Speed of convergence depends on the ordering of no des 

• How about:

A

B

C

D

E

exit

II.I.

A

CB

D
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Depth-first Ordering: Reverse Postorder

• Preorder traversal: visit the parent before its ch ildren

• Postorder traversal: visit the children then the p arent

• Preferred ordering: reverse postorder

• Intuitively

• depth first postorder visits the farthest node as early as possible

• reverse postorder delays visiting farthest node
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“Reverse Post-Order” Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
OUT[Entry] =

// Initialization for iterative algorithm
For each basic block B other than Entry

 OUT[B] = 

// iterate 
While (changes to any OUT occur) {

For each basic block B other than Entry 
in reverse post order {
in[B] = ∪ (out[p]), for all predecessors p of B
out[B] = fB(in[B]) // out[B]=gen[B]∪(in[B]-kill[B])

}

∅

∅
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Consideration in Speed of Convergence

Does it matter if we go around the same cycle multi ple times?  

• Cycles do not make a difference: 

• reaching definitions, liveness

• Cycles make a difference: constant propagation

a = b
b = c
c = 1
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Speed of Convergence

• If cycles do not add info:

• Labeling nodes in a path by their reverse postorder rank: 
1 -> 4 -> 5 -> 7 -> 2 -> 4 ...

• info flows down nodes of increasing reverse postorder rank in 1 
pass

• Loop depth = max. # of “retreating edges” in any acyclic path

• Maximum  # iterations in data flow algorithm = Loop depth+2
(2 is necessary even if there are no cycles)

• Knuth’s experiments show: average loop depth in real programs = 
2.75 

1

2

3

4

5
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III. What is a Loop?

• Goal: 
• Define a loop in graph-theoretic terms (control flow graph)

• Not sensitive to input syntax, 
a uniform treatment for all loops: DO, while, goto’s

• Informally: A “natural” loop has
• edges that form at least a cycle

• a single entry point

start

a b

c

d
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Dominators

• Node d dominates node n in a graph (d dom n) 
if every path from the start node to n goes through d

• a node dominates itself

• Immediate dominance: 
d idom n : d dom n, d ≠ n,  s.t. d dom m and m dom n

• Immediate dominance relationships form a tree

1 (start)

3

2

4

5 6

7

8

m∃¬
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Finding Dominators

• Definition
• Node d dominates node n in a graph (d dom n) 

if every path from the start node to n goes through d

• Formulated as a MOP problem
• node d lies on all possible paths reaching node n ⇒ d dom n

• Direction:
• Values:
• Meet operator:
• Top:
• Bottom:
• Boundary condition: start/exit node = 
• Finite descending chains only?
• Transfer function:

• Speed: 
• With reverse postorder, solution to most flow graphs 

(reducible flow graphs) found in 1 pass



Advanced Compilers  18 L4: Constants, Control Flow

Definition of Natural Loops

• Single entry-point: header (d)
a header dominates all nodes in the loop

• A back edge (n → d) in a flow graph is 
an edge whose destination dominates its source (d dom n)

• The natural loop of a back edge (n → d) is
d + { nodes that can reach n without going through d }.
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Graph Edges

• Depth-first spanning tree
• Edges traversed in a depth-first search of a graph form a

depth-first spanning tree

• Categorizing edges in graph
• Advancing edges: from ancestor to proper descendant

• Retreating edges: from descendant to ancestor
 (not necessarily proper)

• Cross edges: all other edges

1

3

2

4

5 6

7

8

1

3

2

4

5 6

7

8

1

3

2

4

5 6

7

8
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Back Edges

• Definition

• Back edge: n → d, d dom n

• Relationships between graph edges and back edges

• a back edge must be a retreating edge
dominator ⇒ visit d before n, n must be a descendant of d

• a retreating edge is not necessarily a back edge 

• Most programs (all structured code, and most GOTO programs)

• retreating edges = back edges
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Constructing Natural Loops

• The natural loop of a back edge (n → d) is
d + { nodes that can reach n without going through d }.

• Remove d from the flow graph, find all predecessors of n

• Example

1

3

2

4

5 6

7

8
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Inner Loops

• If two loops do not have the same header

• they are either disjoint, or

•  one is entirely contained (nested within) the other
-- inner loop, one that contains no other loop.

• If two loops share the same header

• Hard to tell which is the inner loop

• Combine as one 

a

b c
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Summary

• Constant propagation

• Introduced the reverse postorder iterative algorit hm

• Define loops in graph theoretic terms

• Definitions and algorithms for 

• Dominators

• Back edges

• Natural loops


