
Security Models and Information Flow

John McLean

Center for High Assurance Computer Systems
Naval Research Laboratory

Washington, D.C. 20375

We develop a theory of information flow that differs from Nondeducibility’s, which we
see is really a theory of information sharing. We use our theory to develop a flow-based
security model, FM, and show that the proper treatment of security-relevant causal fac-
tors in such a framework is very tricky. Using FM as a standard for comparison, we
examine Noninterference, Generalized Noninterference, and extensions to Noninterfer-
ence designed to protect high-level output, and see that the proper treatment of causal
factors in such models requires us to consider programs as explicit input to systems. This
gives us a new perspective on security levels. The Bell and LaPadula Model, on the
other hand, more successfully models security-relevant causal information although this
success is bought at the expense of the model being vague about its primitives. This
vagueness is examined with respect to the claim that the Bell and LaPadula Model and
Noninterference are equivalent.

1. Introduction

There is a general belief in the security community that the correct explication of
security should be formulated in terms of Shannon-style information flow.1 This belief
has been explicitly expressed at foundational workshops on computer security and is
implicit when we consider the history of general security models, a history whose
sequence of products includes the Bell and LaPadula Model, Noninterference, and Non-
deducibility.

Despite this general trend to more information-theoretic models of security, a secu-
rity model that is based purely on information flow is still forthcoming. The general
security model that comes closest, Nondeducibility, is really based on a theory of infor-
mation sharing, which is more appropriate to compartmentalization than to security.
Noninterference and its derivatives, including Restrictiveness, incorporate a sense of
information flow that is more intuitive, but there has been little work done in developing
a method for evaluating such models.

This paper formulates a security model based on information flow and shows that
when developing such a model, one must be very careful that the model properly treats
all security-relevant causal factors. This gives us a new perspective from which we can
evaluate other general security models. Using our new model as a standard for com-
parison, we examine Nondeducibility, Noninterference, and the Bell and LaPadula
model. We also examine the relationship between Noninterference and the Bell and
hhhhhhhhhhhhhhh
1. The modifier "Shannon-style" is to distinguish our use of information flow, which is based on
information theory, from the type of information flow that is detected by flow tools. These two
senses of the term, though related, are not identical.

LaPadula Model.

2. A Security Model Based on Information Flow

The general security model that is most self-consciously based on information
theory is Sutherland’s Nondeducibility Model [16]. This model states that information
flows in a system from high-level objects to low-level objects if and only if some possi-
ble assignment of values to the low-level objects in the state is incompatible with a possi-
ble assignment of values to the state’s high-level objects.2 More formally, for any assign-
ments H and L to a system’s high-level objects and low-level objects, respectively, there
is no information flow from the high-level objects to the low-level objects if and only if
p (H)>0 & p (L)>0 → p (H | L)>0.3 Although intuitively appealing, this definition does
not capture information flow but rather information sharing. As such it is more relevant
to compartmentalization than to security. Security allows for information flows from
low-level objects to high-level objects; Nondeducibility does not.4 From the fact that
p (H | L)p (L) = p (L | H)p (H), it follows that p (H)>0 & p (L)>0 → p (H | L)>0 if and
only if p (H)>0 & p (L)>0 → p (L | H)>0.

Nondeducibility accommodates its bidirectional concept of information flow by lim-
iting the objects we are to consider when evaluating a system’s security. It compensates
for the loss of information about system state by extending the notion of an assignment to
a sequence of the different values assumed by these objects, although the sequence does
not contain information about how long a particular value was assumed. According to
Nondeducibility, a system is secure if and only if p (H)>0 & p (L)>0 → p (H | L)>0
where H is an assignment sequence to the system’s high-level input port and L is an
assignment sequence to the system’s low-level input and output ports. As we shall see in
the next section, protecting only high-level input is insufficient for ensuring security
since in many systems high-level output is generated solely from low-level input. More
pertinent to our discussion here is that Nondeducibility’s view of information flow seems
to render it incapable of even being extended to model a system where high-level output
can be generated from low-level input. It cannot distinguish between permissible flows
from low-level output to high-level output, as, e. g., in auditing, and nonpermissible
flows that run in the other direction.

The assumption that high-level output cannot be generated solely from low-level
input is not the only assumption forced upon Nondeducibility by its theory of information
flow. For example, consider a system in which a low-level user is required to give as
input an arbitrary number from some set S. This number is echoed as high-level output
to a second user who must then give as high-level input a different member of S. We can
think of these inputs as constituting unique identifiers, but the system’s purpose is not
important. What is important is that for any number n ∈S , if low is the system’s low-
hhhhhhhhhhhhhhh
2. Here and throughout this paper we use "object" in its broadest sense. System objects include
files, programs, and I/O devices.
3. Sutherland’s formulation is in terms of model theory, but ours is equivalent to his.
4. One may argue on implementation grounds that unless we are content with broadcasting we
must accept two-way information flow whenever there is one-way flow. However, it is, at the
very least, premature to conclude that our theory of security should rule out unidirectional flow as
impossible.

level input port and high is the system’s high-level output port then p (low =n)>0 and
p (high =n)>0, yet p (high =n | low =n) = p (low =n | high =n) = 0. Our system is intui-
tively secure since the real information flow is from the low-level user to the high-level
user and not vice-versa. However, this is a distinction Nondeducibility cannot make. It
can avoid the problem only by being restricted to systems that are input total. Whether
or not such a restriction has other justification, it should not be forced upon a model of
security by the model’s concept of information flow.

It may seem that any information theoretic approach must accept bidirectional
information flow as inevitable. After all, p (L | H) = p (L), i. e. low-level information is
independent of high-level information, if and only if p (H | L) = p (H), i. e. high-level
information is independent of low-level information. However, we can avoid this con-
clusion by taking time into account in our security model and viewing information as
flowing from H to L only if H assigns values to objects in a state that precedes the state
in which L makes its assignment. Let us refer to the assignment of values of all the low-
level objects and high-level objects in state t as Lt and Ht , respectively. Security does
not require that p (Ht | Lt −1) = p (Ht), i. e. that knowledge of the values of low-level
objects in a state gives us no additional information about the values of high-level objects
in the successor state. Such a model would rule out high-level auditing of low-level
users where whenever a low-level file, l , assumes a new value in some state, t , the high-
level audit file is changed so that its value in state t +1 reflects l ’s value in state t .
Instead, security requires that the values of the low-level objects in a state be independent
of the values high-level objects have in the previous state, i. e., previous values for high-
level objects do not affect what a low-level user can see now.5 Formally, this require-
ment is that p (Lt | Ht −1) = p (Lt) or equivalently, that p (Ht −1 | Lt) = p (Ht −1). Although
such a model requires that knowing Lt does not give users any information about Ht −1
that they do not know initially, it does not rule out the possibility that if users consider, e.
g., Lt −1 and Lt together, they can learn something new about Ht −1. To address this con-
cern, we require that p (Lt | Ht −1 & Lt −1) = p (Lt | Lt −1).

Such a model has several advantages over Nondeducibility. First, it prohibits infor-
mation flow from H to L without ruling out possible flows of information from L to H .
Although p (Lt | Ht −1 & Lt −1) = p (Lt | Lt −1) if and only if p (Ht −1 | Lt & Lt −1) =
p (Ht −1 | Lt −1), the latter equality prohibits information only from flowing backwards from
Lt to Ht −1, something presumably prohibited by causal considerations anyway. It does
not prohibit information from flowing from Lt to, e. g., Ht +1. Second, it rules out sys-
tems in which low-level users can gain probabilistic knowledge about high-level events
even if they cannot rule out any particular high-level event as being impossible. Finally,
if we interpret H and L to include information, not only about object values, but also
about user-detectable system resources consumed in generating those values, our model
prohibits timing channels.

It may seem that by focusing on Ht −1 our model fails to protect Lt from Hs where
s <t −1 or s ≥t . We do not consider, e. g., Ht −2 since we assume that for any high-level
hhhhhhhhhhhhhhh
5. For simplicity, we do not here consider the passing of information by using the existence of
high-level objects as a channel. To prohibit such flows we can treat the name space of high-level
objects as the value of an additional high-level object.

object, h , ht −2 can affect Lt only if ht −2 affects Lt −1 or if Ht −1 affects Lt . This amounts
to the assumption contained in any model based on objects that a state can affect its suc-
cessor only via information stored in its objects. Similarly, protecting Lt from future and
current values of high-level objects is not necessary. If p (Lt | Hs) ≠ p (Lt) where s >t ,
then causal considerations force us to conclude that the flow is from Lt to Hs and not
vice-versa. Future states of a state machine cannot causally affect previous states. If
p (Lt | Ht) ≠ p (Lt), then causal considerations force us to conclude that the flow is not
between Ht and Lt , but rather to both Ht and Lt from objects in a previous state. A state
cannot not causally influence itself.

The problem with our model is not that it is too weak, but rather that it is too strong.
It fails to adequately address the fact that for a security violation to take place, not only
must the value of Lt be statistically correlated with the value of Ht −1, but the value of
Ht −1 must have exerted some causal influence on the value of Lt . That is, Lt must have
its value because Ht −1 has a particular value. It cannot be the case that the the statistical
correlation arises simply because the values of both are caused by some other low-level
event.

As an example, consider a system with a very strict auditing requirement. To
prevent low-level users from crashing the system before some particular piece of data
they have have written to a low-level file has been recorded in a high-level audit file, the
system requires that the audit file be written first, i. e., a program can write a value X to a
low-level object only if it has previously written X to the high-level object that consti-
tutes the audit file. This "audit first" requirement that a low-level object can assume a
value X in system state t only if the high-level audit file has the value X in the system’s
predecessor state t −1 gives rise to a statistical dependency between the value of the low-
level file in state t and the high-level file in state t −1. Yet, the requirement does not
represent a security violation since the value of the low-level file is not causally
influenced by the high-level file. The moral is that for a true security breach to occur, we
need both a statistical dependency and a causal dependency. A statistical dependency, by
itself, is not enough.

This fact does not imply that an adequate information-theoretic model of security is
impossible. It may be the case that although our model, which considers only informa-
tion flow between a state and its successor state, fails to sufficiently model all security-
relevant causal connections, there is a more inclusive information flow model that
succeeds. For example, consider the model, which we shall call the Flow Model (FM),
that states that a system is secure only if p (Lt | Hs & Ls) = p (Lt | Ls) where Hs and Ls
are the sequences of values assumed by high-level objects and low-level objects, respec-
tively, in every state that precedes t .6 One could argue that if we know the value of Lt −2,
we can deduce the values of the audit file in state t −1 and then deduce the value of Lt
from this information and, possibly, Lt −1. Hence, the value of our audit file in state t −1
adds no new information to that contained in the values of the low-level objects in states
hhhhhhhhhhhhhhh
6. It should be noted that this notion of sequence, which we shall use throughout the rest of this
paper, differs from the sequences used above when describing Nondeducibility in that it records
an object’s value for each state, not simply the sequence of value changes that an object has
undergone.

t −1 and t −2.

Even if FM can handle this particular example of a statistical correlation between
high-level objects and low-level objects that is not a security violation, we have not
shown that it can handle more elaborate examples. FM’s correctness depends on the
assumption that if we know the entire set of objects that comprise a system and the his-
tory of all of these objects, we have the machinery necessary to separate those statistical
correlations between high-level objects and low-level objects that are security violations
from those that are not. Rather than pursuing this issue here, we simply note that when
formulating any security model based on information flow, we must be careful that the
model adequately addresses all security-relevant causal considerations. For the rest of
this paper we shall use FM as a standard with which we can evaluate other security
models based on information flow.

3. Noninterference and Information Flow

Like Nondeducibility, Goguen and Messeguer’s Noninterference Model is also
heavily influenced by information theory [4]. In its original form, a system was said to
be noninterfering if its low-level output was independent of its high-level input in the
sense that for any system with output function out (u ,I), whose value is the output gen-
erated by input history I to user u , out (u ,I) = out (u ,I*), where I* is I purged of all
inputs from users with security levels that are greater than u ’s.

When compared with FM, Noninterference does very well, although its domain is
limited. Noninterference views a system as comprising four objects: high −in , low −in ,
high −out , and low −out , which are high-level and low-level input ports and output ports,
respectively. Since Noninterference assumes that system output is completely deter-
mined by system input, probabilistic considerations are irrelevant. Nevertheless, realiz-
ing that the relevant probabilities are limited to the domain {0,1}, we can formulate
Noninterference as the requirement that p (low −outt | high −ins & low −ins) =
p (low −outt | low −ins) where xs denotes the sequence of values x has assumed for all
times previous to t .7 Although on the surface this requirement differs from FM by not
considering the object low −in on the left-hand side of the first probability or the objects
high −out and low −out on the right-hand side, this omission follows from
Noninterference’s assumptions that low −in cannot be influenced by the system, that out-
put is determined by input, and that high-level output must be generated from high-level
input and therefore, cannot be compromised without also compromising high-level input.

For future reference let us list Noninterference’s assumptions that will concern us:

(1) Systems initially contain programs. System input is data to these programs
and system output is the result of these programs operating on this data.

hhhhhhhhhhhhhhh
7. This formulation only approximates Noninterference. The formulation, like FM, requires that
high −ins not add any new information to low −outt not already contained in low −ins . Nonin-
terference is more properly viewed as the requirement that high −ins not share any information
with low −outt . This does not seem to be a problem for Noninterference since it is hard to imagine
high −ins and low −outt sharing information without high −ins causally affecting low −outt . How-
ever, we shall see that it does cause problems for some of Noninterference’s extensions.

(2) System programs are deterministic.

(3) Systems cannot generate high-level output solely from low-level input.

(4) Given a system, its output to a user can be determined solely by its input his-
tory.

Assumption (1) is a fundamental assumption of the trace-based specification methodol-
ogy on which Noninterference is based [2, 11]. This methodology assumes that a system
is a set of programs that takes input data and returns output data. A system’s identity is
the set of programs that constitute the system and determine its input/output behavior.
Assumption (2) follows from the fact that out is a function. Assumption (4), which fol-
lows from the fact that out takes only u and I as arguments, rules out any system whose
output cannot be determined without knowledge of previous output. As such, Assump-
tion (4) follows from Assumption (2). Assumption (3) is necessary if Noninterference is
to be an adequate security specification since, like Nondeducibility, Noninterference pro-
tects only inputs.

Noninterference’s adequacy stands or falls with these assumptions. Unfortunately,
Assumption (3) is not generally true [14]. Systems that generate cryptographic keys con-
vert low-level input seeds into high-level output in their normal course of operation.8 In
less esoteric realms, many systems that perform resource-intensive analysis, such as the
analysis required by space-based sensing systems or by marketing analysis systems, also
convert low-level input into high-level output. The security value gained by data in such
systems is due to the time involved in system processing or the nature of the processing,
itself, not the input. Since Noninterference protects only high-level input, it does not
protect the information such systems generate. For example, given any key generating
system, we could append a low-level output channel that repeats all high-level output
without violating Noninterference since our system does not have any high-level input to
protect.9

The problem of protecting high-level output is even more pressing in the setting of
McCullough’s generalization of Noninterference designed to include nondeterministic
systems [10]. In this model, a system is noninterfering if for every legal trace of the sys-
tem and every alteration we can make to that trace by deleting or inserting high-level
inputs, there is a legal trace that is equivalent to the first trace except perhaps with respect
to high-level outputs.10 Generalized Noninterference does not simply allow for nondeter-
minism, i. e. for a sequence of inputs to be compatible with different outputs; it also
allows for output to affect a trace’s set of legal futures. For example, there is nothing in
Generalized Noninterference to rule out a system where low-in(a).low-out(x), low-
in(a).low-out(y), and low-in(a).low-out(x).low-in(b).low-out(c) are all legal, but low-
in(a).low-out(y).low-in(b).low-out(c) is not. In such a system we cannot determine the
hhhhhhhhhhhhhhh
8. This example was suggested to me by Robert Morris.
9. The problem of protecting high-level data that is not generated from high-level input is not a
mere theoretical contrivance. The LOCK developers found it pressing enough to supplement their
Noninterference model with a separate access control model [3].
10. McCullough actually rejected this definition of security, now called Generalized Noninterfer-
ence, in favor of a stronger property called Restrictiveness since Generalized Noninterference is
not composable. However, the details of Restrictiveness do not concern us here. Everything we
say in this paper about Generalized Noninterference applies to Restrictiveness as well.

output generated by the input sequence low-in(a).low-in(b) without knowing the output
generated by low-in(a). Hence, Generalized Noninterference rejects not simply Assump-
tion (2), but Assumption (4) as well. However, as is the case with Noninterference, for
Generalized Noninterference to be an adequate specification of security, we must make
the assumption, which is not generally true, that a program cannot generate high-level
output if the program is given solely low-level input.

Extensions to Generalized Noninterference that address this problem by protecting
high-level output have been developed by Guttman and Nadel [5] and by McLean and
Meadows [14]. Both extensions require that a trace’s high-level outputs cannot interfere
with its low-level outputs any more than its high-level inputs can. Since both extensions
are formulated in the setting of Generalized Noninterference, they are not all that helpful
with the problem of protecting high-level outputs in the setting of simple Noninterfer-
ence. A more serious problem appears when we consider the extensions vis-a-vis FM. It
may seem that both extensions are equivalent to FM insofar as they can both be approxi-
mately characterized by the requirement that
p (low −outt | high −ins & high −outs & low −ins) = p (low −outt | low −ins) if we realize
that this characterization is stronger than either extension since it includes probabilistic
considerations that Generalized Noninterference, the Guttman-Nadel extension, and the
McLean-Meadows extension all ignore.11 However, this is not the case. FM prohibits
high −outs from adding knowledge to low −outt not previously contained in low −ins ; the
Guttman-Nadel extension and the McLean-Meadows extension more closely approxi-
mate the stronger requirement that high −outs not share any information with low −outt .
In other words, neither extension takes into account the fact that sometimes there is noth-
ing wrong for there to be an information-theoretic link between high-level output and
low-level output. Modifying our "audit first" example slightly, consider a system that in
order to prevent users from crashing the system before some particular piece of low-level
output they have just generated is sent as high-level output to an audit file, requires the
audit file to be written first. In such a system, low-level output is legal only if it has
already appeared as high-level output.

Although such systems violate both extensions to Generalized Noninterference, we
have seen above in our development of FM that they do not violate security. For a true
security breach to occur we need both a statistical dependency and a causal dependency
between the two outputs. Hence, Generalized Noninterference faces two problems.
First, it faces the problem faced by Nondeducibility and any form of Noninterference that
protecting high-level input is not always sufficient to protect high-level output. Second,
since Generalized Noninterference rejects Assumption (4) of Noninterference, any exten-
sion to it that protects high-level outputs faces the problem faced by other information-
theoretic models of security that causal dependencies must be adequately modeled to dis-
tinguish between statistical correlations among outputs that are security violations and
those that are not.
hhhhhhhhhhhhhhh
11. The price of ignoring probabilistic considerations should not be underestimated. For exam-
ple, a system with low-level commands to nondeterministically print on a low-level terminal either
previous high-level input or a randomly generated character string satisfies Generalized Nonin-
terference but is clearly not secure. On the other hand, encryption systems fail to satisfy Nonin-
terference but can satisfy FM if we treat encryption as introducing random noise.

To correctly model these causal dependencies, we need to consider the programs
that connect trace events. This can be done within an input/output-based specification
methodology only by considering programs as input. In other words, any formulation of
Noninterference that rejects Assumption (4) must also reject Assumption (1). The result
is that a system is no longer regarded as a set of programs that operate on input data, but
rather as a primitive interpreter that operates on input programs and data. Fortunately, by
rejecting Assumption (1) we can solve our first problem as well.

It should be noted that rejecting Assumption (1) and regarding all programs that are
executed as system input does not necessitate changing the syntax of Noninterference or
any of its derivatives. For example, traditionally a Noninterference specification of a
system that receives low-level input L and returns to user u high-level output H , which
is the result of applying some program P to L , would be specified by saying that
out (u ,low −in (L))=H . Now, we also have to regard P , the program the performs the
analysis on L , as being input as well. Hence, our specification would say that
out (u ,low −in (L).high −in (P))=H . For Generalized Noninterference, our specification
would say that if low −in (L).high −in (P) is legal, then
low −in (L).high −in (P).high −out (H) is legal. Note that we regard P as being high-
level. In general, on this approach high-level output requires high-level input either in
the form of data or in the form of a program. In other words, we extend Assumption (3)
to require that our system initially contains neither high-level data nor high-level pro-
grams. Note also that we regard a program as being high-level, not necessarily because
the program, itself, is classified, e. g. a key-generating program, but also if the applica-
tion of the program can generate high-level output from low-level input, e. g., programs
that are not classified but are extremely expensive to run. This necessitates our re-
thinking what a high-level security level means in such contexts.

Given this simple addition to Noninterference, we can solve our problem of protect-
ing high-level output. We assume that high-level output that must be protected cannot be
generated from low-level data unless that data has been operated on by a high-level pro-
gram. Hence, regarding the program as further necessary input, high-level output that
must be protected can be generated only from high-level input. Hence, protecting high-
level input is sufficient to assure the necessary protection of high-level output.12 The fact
that we are once again faced solely with the task of protecting input also solves our
second problem. The high-level output that can interfere with low-level output is exactly
the high-level output that was not generated from any high-level input (i. e. output gen-
erated solely from low-level input but is, nevertheless, sent to high-level users) and is,
hence, not intrinsically "high". If we like, we could explicitly distinguish between output
that is high-level, in itself, e. g. output that is generated from high-level input or from a
high-level program, and output that is high-level simply because it is sent to a high-level
user or file, e. g., low-level data that is sent to a high-level audit file. However, there is
no need to make this distinction explicit in our Noninterference specification.

hhhhhhhhhhhhhhh
12. Regarding programs as explicit input also permits us to solve another problem faced by
Noninterference: the fact that some systems, e. g. encryption systems, generate low-level output
from high-level input. By modeling the programs of such systems explicitly, we can treat some
programs as being trusted and explicitly exclude them from our requirement of Noninterference.

4. The Bell and LaPadula Model and Information Flow

By comparing FM to Nondeducibility, Noninterference, and several of the latter’s
derivatives, we have unearthed several inadequacies. In the case of Noninterference and
its derivatives, we have also seen how to correct these inadequacies. In this section we
consider to what extent the problems faced by these models are also faced by the access
control model of Bell and LaPadula (BLP) [1] and the relation between BLP and Nonin-
terference.13 Unfortunately, the question of whether BLP adequately models all
security-relevant causal information does not permit a conclusive answer since the primi-
tives of BLP do not have a rigorous general semantics.14 If we interpret the statement
"program P read s file F " as implying that the value of F can causally influence the
behavior of P and the statement "program P write s file F " as implying that P can
causally influence the value of F , then BLP comes very close to capturing the causal
dependencies necessary for security. On this view read and write are basically causal
notions and not based solely on statistical correlations.15 Further, insofar as there is any
consensus in the security community as to what read and write mean, the consensus
seems to be consistent with such an interpretation. This is the source of BLP’s intuitive-
ness as a security model. It is also not surprising that BLP avoids any problem that is
raised by a purely information-theoretic explication of security when we consider that of
all the general security models, BLP is that model that is least indebted to information
theory. However, we must take BLP’s correctness in this sense with a grain of salt since
there is nothing in the model, itself, that rules out more bizarre interpretations of read
and write .

The looseness of BLP’s primitives is the source of the model’s great flexibility.
Although Noninterference is also a model without a formal semantics, there seems to be
little, if any, disagreement as to what the primitives of Noninterference mean, i. e., what
constitutes input and output. Unfortunately, Noninterference, in general, is too strong: in
most systems we are willing to tolerate high-level input having potentially security-
compromising effects on low-level output, e. g., with respect to operating system mes-
sages concerning available storage, device status, etc. Since disallowing all such infor-
mation flow may lead to performance degradation we are unwilling to accept, we may
permit the flow but require that it be monitored. BLP, on the other hand, permits us to
formulate a policy that allows all flows (if, e. g., we interpret the symbol read as a rela-
tion that holds between no program-object pair) or a policy that allows no flows (if, e. g.,
we interpret the symbols read and write as denoting relations that hold between every
program-object pair): hence, the need for covert channel analysis to determine the effec-
tiveness of a particular interpretation of the models primitives for a particular system
hhhhhhhhhhhhhhh
13. We ignore problems with BLP raised in [12] and assume that we have transition restrictions
as formulated in [13]
14. In what follows we do not treat the rules as part of the formal part of BLP. One could claim
that the rules give a partial semantics to the primitive terms of BLP, but it is not clear how helpful
such a semantics is. Without going too deeply into a well-discussed set of issues, we note that the
BLP rules are allowed to change from model application to model application, and we are given
no guidelines about how far the rule set is allowed to change [8]. As such, the set of rules that are
contained in [1] are vacuous as far as providing a general semantics for the model’s primitive
terms.
15. As such, this view differs from the interpretations of read and write found in [17] and [9].

[15].

The claim that BLP captures security-relevant causal information, however loosely,
that extensions to Generalized Noninterference do not may seem odd to many since it is
widely believed that BLP and Noninterference are generally equivalent [6, 18]. The
sense of "equivalence" used here seems to be that the set of systems which one model
condones is the set of systems the other condones. It is worthwhile examining this thesis
here since it is related to our claim that BLP takes security-relevant causal information
into account that Noninterference-style explications do not. Just as the lack of a general
semantics for BLP forces us to take the latter claim with a grain of salt, it also forces us
to take the former claim with a grain of salt.

The equivalence thesis is supported by a proof published by Tom Haigh [6]. How-
ever, despite Haigh’s proof, adherence to the equivalence thesis is puzzling when we
consider it together with a second wide-spread belief, which we can call the GM ade-
quacy thesis, that when one uses Noninterference one does not need to do a covert chan-
nel analysis [7]. What is puzzling is that nobody subscribes to the view which follows
from these two theses, a view which could be called the BLP adequacy thesis: when one
uses BLP, one does not need to do a covert channel analysis. In fact, everybody seems to
regard the BLP adequacy thesis as being false.

One problem with the equivalence thesis, is that Haigh establishes it by making use
of the assumption that we cannot use a file f 1 to modify another file f 2 without observ-
ing f 1. The purpose of the assumption is to side-step the fact that BLP prohibits certains
types of access which are allowed by Noninterference. In particular, Noninterference
allows an unclassified user to modify a top secret file f 1 on the basis of a secret file f 2
as long as the user does not view either file. As an example, Noninterference permits the
command cp(f1,f2) where cp(x,y) copies x to y . On the standard view, BLP would
prohibit such a command since the operation would have to grant to the user read access
to f 1. The assumption contained in Haigh’s proof forces Noninterference to prohibit the
access as well.

There are two points to note here. First, the assumption that one cannot use one file
to modify another file without observing the former goes against the heart of Noninterfer-
ence. Noninterference is an input/output specification of security that meticulously
avoids any mention of how security is to be implemented. Eliminating the ability to
access without viewing a file is clearly an implementation decision. Nevertheless, we
can incorporate the assumption in the theorem, itself, and say that any system which does
not contain the ability to use a file f 1 to modify another file f 2 without observing f 1
satisfies Noninterference if and only if it satisfies BLP.

However, this brings us to a more serious problem with the equivalence thesis.
When we are talking about equivalence of security models, we are really talking about
equivalence of the classes of systems models condone as secure. Hence, we are talking,
not just about security models, but also about mappings of models to systems, for we
cannot prove that a system satisfies a model without a mapping between model primi-
tives and system primitives.

Returning to our copy command, it may be true that cp(f1,f2) is ruled out by the
standard interpretation of BLP. However, there is nothing in the simple security condi-
tion and the *-property that forces us to adopt the standard interpretation. We could

simply not view the command as having read access to f 1 or write access to f 2. As
stated above, BLP is a formal model of computer security that contains no interpretations
of its primitive terms. We could just as well state the simple security condition as the
assertion "If x is a subject and y is an object and x has φ access to y , then the security
level of x dominates that of y ." The point is strengthened if we remember that subject ,
object , security level and dominates are formal terms as well, with the only restriction
being that security level must be a finite lattice under dominates . A more accurate way
of expressing the information contained in the simple security condition is "if Sx and Oy
and Rxy , then Lx ≥Ly " under the dominates relation. The equivalence of such a formula-
tion of BLP and Noninterference obviously depends on our interpretation of S , O , R ,
and L just as much as the incorporation of security-relevant causal considerations into
BLP does.

5. Conclusion

We have seen that Nondeducibility’s bidirectional concept of information flow is
more appropriate to a theory of compartmentalization than to a theory of security.
Nevertheless, we have been able to formulate a security model, FM, solely in terms of
information flow that allows upward only flows of information, but we have seen that the
proper treatment of security-relevant causal information is tricky in an information
theoretic framework. Although this fact does not show that a purely information-
theoretic model of security is impossible, it should make us careful when evaluating such
a model. Using FM as a tool for evaluating other security models based on information
flow, we have seen that Nondeducibility and extensions to Generalized Noninterference
designed to protect high-level output generated from low-level input fail to take neces-
sary causal information into account. The problems with Noninterference-style
specifications can be fixed by considering programs as input. Insofar as the customary
interpretation of BLP’s primitives captures the necessary causal information, however
loosely, BLP is not subject to the same criticisms. Finally, we have shown the relation-
ship between this fact and the thesis that Noninterference and BLP are equivalent.

Acknowledgements

I wish to thank James Gray, Ira Moskowitz, and Todd Wittbold for their suggestions
regarding this paper.

References

1. D. E. Bell and L. J. LaPadula, ‘‘Secure Computer System: Unified Exposition and
Multics Interpretation,’’ MTR-2997, MITRE Corp., Bedford, MA, March, 1976.
Available as NTIS AD A023 588.

2. S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe, ‘‘A Theory of Communicating
Sequential Processes,’’ J. ACM, vol. 31, no. 3, pp. 560-599, July 1984.

3. T. Fine, T. Haigh, R. O’Brien, and D. Toups, ‘‘Noninterference and Unwinding for
LOCK,’’ in Proceedings of the Computer Security Foundations Workshop, Fran-
conia, NH, 1989.

4. J. A. Goguen and J. Meseguer, ‘‘Security Policies and Security Models,’’ in Proc.
1982 IEEE Symposium on Security and Privacy, pp. 11-20, IEEE Computer Society
Press, April, 1982.

5. J. Guttman and M. Nadel, ‘‘What Needs Securing?,’’ in Proc. Computer Security
Foundations Workshop I, pp. 34-57, Franconia, New Hampshire, June 1988.

6. J. T. Haigh, ‘‘A Comparison of Formal Security Models,’’ in Proc. 7th National
Computer Security Conference, pp. 88-119, Gaithersburg, MD., Sept. 1984.

7. J. T. Haigh, R. A. Kemmerer, J. McHugh, and W. D. Young, ‘‘An Experience
Using Two Covert Channel Analysis Techniques on a Real System Design,’’ Proc.
1986 IEEE Symposium on Security and Privacy, pp. 14-24, IEEE Computer Society
Press, Oakland, CA., 1986.

8. L. J. LaPadula, ‘‘The ‘Basic Security Theorem’ of Bell and LaPadula Revisited,’’
Cipher, January 1989.

9. L. Marcus and T. Redmond, ‘‘A Semantics of Read,’’ in Proc. Ninth National Com-
puter Security Conference, 1986.

10. D. McCullough, ‘‘Specifications for Multi-Level Security and a Hook-up Pro-
perty,’’ in Proc. 1987 IEEE Symposium on Security and Privacy, IEEE Computer
Society Press, April 1987.

11. J. McLean, ‘‘A Formal Method for the Abstract Specification of Software,’’ J.
ACM, vol. 31, no. 3, pp. 600-627, July 1984.

12. J. McLean, ‘‘Reasoning about Security Models,’’ in Proc. 1987 IEEE Symposium
on Security and Privacy, pp. 123-131, IEEE Computer Society Press, April 1987.
Also in Advances in Computer System Security, vol. III, ed. R. Turn, Artech House,
Dedham, MA, 1988.

13. J. McLean, ‘‘The Algebra of Security,’’ in Proc. 1988 IEEE Symposium on Security
and Privacy, IEEE Computer Society Press, April 1988.

14. J. McLean and C. Meadows, ‘‘Composable Security Properties,’’ Cipher, Fall 1989.

15. J. McLean, ‘‘Specifying and Modeling Computer Security,’’ IEEE Computer, vol.
23, no. 1, pp. 9-16, January 1990.

16. D. Sutherland, ‘‘A Model of Information,’’ in Proc. of the 9th National Computer
Security Conference, Gaithersburg, MD., September, 1986.

17. I. Sutherland, ‘‘Relating Bell-LaPadula-Style Security Models to Information
Models,’’ in Proceedings of the Computer Security Foundations Workshop, Fran-
conia, NH, 1988.

18. T. Taylor, ‘‘Comparison Paper between the Bell and LaPadula Model and the SRI
Model,’’ Proc. 1984 IEEE Symposium on Security and Privacy, IEEE Computer
Society Press, Oakland, CA., 1984.

