
Quantifying Information Flow

Gavin Lowe∗

February 5, 2002

Abstract

We extend definitions of information flow so as to quantify the amount
of information passed; in other words, we give a formal definition of the
capacity of covert channels. Our definition uses the process algebra CSP,
and is based upon counting the number of different behaviours of a high
level user that can be distinguished by a low level user.

1 Introduction

Previous work has sought to capture the notion of information flow (sometimes
called non-interference or independence) in a multi-level security system: that
is the question of whether a high level user, High, can pass information to a
low level user, Low, via a covert channel. A common approach has been to
produce a definition of information flow in a process algebraic setting; see, for
example [1, 14, 4, 12, 7, 5]. Most definitions are based around asking whether
Low can distinguish between two different behaviours of High, so that High can
use the system to pass at least one bit of information to Low.

However, in many circumstances, some flow of information will be inevitable
and acceptable, providing it is not too high. For example, the Orange Book [17]
includes requirements for the estimation of the capacity of covert channels, and
recommendations for acceptable values.

In this paper we extend the previous work on defining information flow, and
produce a definition, using the process algebra CSP, of the quantity of information
flow. We will define the information flow quantity to be the number of behaviours
of High that are distinguishable from Low’s point of view. If there are N such
distinguishable behaviours, then High can use the system to encode an arbitrary
number in the range 0, . . . ,N − 1 to send it to Low; in other words, log2 N bits
of information are passed. (A feature of this definition, that the reader should be

∗Author’s address: Oxford University Computing Laboratory, Wolfson Building, Parks
Road, Oxford, OX1 3QD, UK; e-mail: gavin.lowe@comlab.ox.ac.uk.

1

aware of, is that an absence of information flow is represented by an information
flow quantity of 1, rather than 0.)

An important consideration in models of information flow is the treatment of
nondeterminism. Nondeterminism occurs in models of systems for a number of
reasons, for example: the “noise” caused by other users of the system; inherent
nondeterminism in the system; and aspects of the system that are resolved at a
lower level of abstraction than that at which the model is built.

Previous formal approaches to the quantity of information flow have modelled
this nondeterminism probabilistically. The capacity of covert channels is then
defined making use of Shannon’s theory of information flow [16]. See, for example,
[9, 18, 8]. Clearly, probabilistic models are useful only when one can accurately
assign probabilities to the nondeterminism of the system. This is rarely the case:
one simply knows that the system will behave in one of several ways, without
knowing anything about the relative probabilities. We believe it is better to
consider all possible ways in which the nondeterminism can be resolved, and to
consider the worst case (i.e. the maximum information flow): thus we obtain an
upper-bound on the channel capacity; if, in fact, the nondeterminism is resolved
differently, then we will have over-estimated the capacity, which is the safe way
in which to err.

An additional form of nondeterminism is underspecification in designs. For-
mal analysis is normally applied to designs rather than to implementations: by
the time one has produced an implementation, there is too much detail to make
formal analysis practical. Further, it is well known that the earlier an error is
discovered, the easier and cheaper it is to fix; therefore it makes most sense to
perform an analysis as early in the development as possible. Nondeterminism in
designs represents underspecification: the intention is that later stages of the de-
velopment resolve the nondeterminism. However, a design can only be considered
correct if all ways of resolving the nondeterminism lead to a correct implementa-
tion; thus, when considering information flow quantity, we again want to consider
the maximum flow for all ways in which the nondeterminism can be resolved.

Information can be passed from High to Low based upon the time at which
events become available; it is therefore necessary to include a notion of time in
order to obtain realistic models. It is reasonable to assume that there is a limit
on how accurately agents can tell the time: that is, they effectively have a time
quantum. In order to model this, it turns out to be convenient to work in a
discrete-time model, taking the time quantum to be one time unit. In principle,
one could work in a continuous-time model, such as Timed CSP [15] (this was
the approach taken in an earlier version of this paper). However, this tends to
lead to less tractable models than discrete-time models.

One advantage of working in a timed model is that we can define the quan-
tity of information flow within some finite time period, and hence the rate of
information flow.

In the following section, we give a brief introduction to the syntax and se-

2

mantics of discrete-time CSP. In Section 3, we consider some example processes,
and for each give the information flow quantity, thus helping to describe our
intuitions. In Section 4, we formalise the notion and give our main definition;
we illustrate it with some examples. The definition is slightly non-intuitive, and
proved surprisingly difficult to get right: a number of simpler definitions fail to
give the right answer for example processes. In Section 5 we show that those
processes for which our definition gives an information flow quantity of 1—i.e. no
information flow—are precisely those processes that satisfy a more intuitive defi-
nition of lack of information flow, similar to that in [4, 3]. In Section 6 we consider
the amount of information passed within a bounded amount of time, thus leading
to a definition of the capacity of covert channels in bits per time unit. Finally,
we sum up and give pointers to future work in Section 7.

2 A brief overview of discrete-time CSP

In this section we give a brief overview of discrete-time CSP. More details can
be obtained from [13, 15, 10].

2.1 Untimed syntax

An event represents an atomic communication; this might either be between two
processes or between a process and the environment. Channels carry sets of
events; for example, c.5 is an event of channel c. {|c|} represents the set of events
of channel c. The distinguished event tock represents the passage of one unit
of time. All processes in a system will participate in this event, and none can
prevent it from happening, i.e. no process can stop time. Σ represents the set of
all standard (i.e. non-tock) events, and Σtock =̂ Σ ∪ {tock}.

The process STOP can perform no standard events, but simply allows time
to progress. The process a → P can perform the event a, and then act like P ;
the process allows time to progress, and such progress does not remove the avail-
ability of a. The process ?a : A → Pa offers the set of events A; if a particular
event a is performed, the process then acts like Pa ; again, the process allows time
to progress, and such progress does not remove the availability of the events of A.
The process WAIT t ; P does nothing for the first t time units, and then acts
like P .

The process P 2 Q represents an external choice between P and Q ; the
initial events of both processes are offered to the environment; when an event is
performed, that resolves the choice. The process allows time to progress, but tock
events do not resolve the choice. P u Q represents an internal or nondeterministic
choice between P and Q ; the process can act like either P or Q , with the choice
being made according to some criteria that we do not model.

The process P
t
. Q initially acts like P ; however, if no standard events of P

3

occur within the first t time units then a timeout occurs and the process acts
like Q . By contrast, the process P 4t Q initially acts like P , but control is
transferred to Q after t time units, regardless of the progress made by P .

P \ A acts like P , except all events from the set A are hidden, i.e. made
internal. Such internal events are urgent in the sense that they will occur as soon
as they become available, i.e., before any tock events.

The process RUN (A) can perform any events from A, and never refuse any
such events. The process CHAOS (A) is the most nondeterministic, nondivergent
process with alphabet A; it can perform any sequence of events from A, and
refuse any events.

P ‖
A

Q represents the parallel composition of P and Q , synchronising on events

from A; the processes also synchronise on the event tock . P ||| Q represents an
interleaving of the processes P and Q ; i.e. parallel composition synchronising
only on the event tock .

2.2 Semantics

A refusal is either a set X of events, representing that the process is in a stable
state—i.e. no internal activity is possible—and that none of the events of X are
available, or the null refusal r, representing the absence of refusal information,
possibly because the process did not enter a stable state. A refusal trace1 is an
alternating sequence of refusals and events, starting and finishing with a refusal,
for example 〈{b}, a, r, tock , {a, b}〉, representing that the process can alternately
exhibit the given refusal information and perform the given events.

The discrete-time refusal traces model of CSP represents a process P by the
set of its refusal traces, denoted R[[P]]. Compositional denotational semantic
equations, giving the refusal traces of a compound process in terms of those of
its components, can be found in [10].

3 Thought experiments

To help motivate the problem further, we consider some example processes, and
in each case quantify the information passed, thus explaining our intuitions.

Throughout this paper we will let H be the set of events for High, which will
have names like h, and we will let L be the set of events for Low, which will have
names like l . We assume that Σ is partitioned by H and L. We also assume that
High and Low can both observe tock events.

1Refusal traces are normally known as refusal tests; however, we use the term “test” for
a somewhat different view of processes, and so we adopt the term “refusal trace” to avoid
confusion.

4

Example 1 Consider the process

P1 =̂ h → l → STOP
1
. STOP .

We assume that Low is not able to detect the precise time at which events occur.
Otherwise, processes like the above would give an unbounded amount of infor-
mation flow: High could pass an arbitrary real number t in the range [0, 1) by
performing his event at time t ; Low could observe the time at which the l event
becomes available, and so deduce the value High is trying to send; this seems
counter-intuitive.

Instead, we assume a finite speed for Low: we assume a time quantum, such
that Low cannot vary his behaviour more rapidly than once per time quantum.
For notational ease, we take the time quantum equal to one time unit. Thus Low
can only tell the time by observing tock events performed, and cannot tell the
difference between two times within the same time unit. Further, he can only tell
that an event is not available by seeing that event refused up to a tock .

Hence the above process has an information flow quantity of 2: if High chooses
to perform an h within the first time unit then Low will be able to perform an l ;
if High chooses not to perform an h within the first time unit, then Low will see
the event refused up to the first tock . Thus High can use P1 to pass one bit of
information to Low.

Example 2 Consider

P2 =̂ h → l → STOP
N
. STOP .

This process has an information flow capacity of N +1. High can pass an arbitrary
value k in the range 0, . . . ,N − 1 by performing his event after k time units;
Low will then be able to perform his event after observing k tocks. High can
pass an additional value by not performing his event; Low will observe that he is
unable to perform his event throughout the first N time units.

Note the difference between this example and the previous: in the previous
example, Low could only tell whether or not High had performed an event; in this
example, there is additional information from timing considerations. In the rest
of this section we restrict ourselves to information flow of the former kind, by
allowing events to occur only within the first time unit, by including an explicit
timeout at time 1.

Example 3 Consider:

P3 =̂

(
h1 → (l1 → STOP u l2 → STOP)
2 h2 → (l1 → STOP u l2 → STOP)

)
1
. STOP .

This process certainly has an information flow of at least 2, for Low can tell
whether or not High has performed some event. The question is whether Low

5

can distinguish the two behaviours of the system following h1 and h2 events. If
the two nondeterministic choices were implemented identically, then clearly the
answer is no (and the information flow quantity would be 2). However, the normal
intuition in CSP is that a nondeterministic choice represents under-specification:
this can be resolved by the implementer deciding how to implement the under-
specification, or it can be resolved by some mechanism at run time. For example,
if the first nondeterministic choice were implemented to always select its first
argument, and the second nondeterministic choice were implemented to always
select its second argument, then Low would indeed be able to distinguish the two
behaviours, and so the information flow quantity would be 3.

We indeed take the information flow quantity of this process to be 3, being
the higher of the above possible values; in other words, we consider the worst
case scenario.

Example 4 Let

P4 =̂

h1 → l1 → STOP
2 h2 → l2 → STOP
2 h3 → (l1 → STOP u l2 → STOP)

 1

. STOP .

This has an information flow quantity of 3, as does the process (h1 → l1 →

STOP 2 h2 → l2 → STOP)
1
. STOP . The h3 branch does not add any infor-

mation flow: if Low can perform an l1 then he can deduce that High performed
either h1 or h3, but he cannot tell which; similarly, if Low can perform an l2 then
he can deduce that High performed either h2 or h3, but he cannot tell which.

We are assuming that Low cannot make copies of the system so as to perform
repeated experiments: if he could, he might be able to make a copy of the system
following an h3, and then in repeated experiments observe both l1 and l2 events
(corresponding to different resolutions of the nondeterministic choice) and hence
deduce that h3 had indeed been performed.

Example 5 Let

P5 =̂ (l → STOP 2 h → STOP)
1
. STOP .

If High performs his event (before the first tock) then Low will see his l event
refused; however, if High does not try to perform his event, then Low will be able
to perform his event. However, if Low is able to perform an l , then he cannot
tell whether or not High was attempting to perform h: High’s h might have been
preempted by Low’s l . High and Low might be able to use this process to pass
one bit of information, but we cannot be sure that they can do so reliably.

The normal CSP intuition is that if both High and Low attempt their events
at the same time, then it will be nondeterministic which succeeds. However, we
again consider the worst case scenario, and take the information flow quantity

6

to be 2, for clearly there is the possibility of some flow of information. It might
be that the process scheduler gives priority to High; or maybe High can always
get his event in before Low’s (but both attempt their event within the first time
unit).

4 Defining information flow quantity

In this section we formalise information flow quantity, by considering the way in
which High and Low interact with the system in order for High to pass information
to Low. We assume that the behaviour of the system is modelled by a CSP
process P . High will act in different ways depending upon the value he is trying
to send; Low will interact with the system to try to deduce the value being sent.
In Section 4.1 we consider the way in which Low will interact with the system;
this induces an equivalence over systems—corresponding to indistinguishability
by Low—for which we derive an alternative characterisation. In Section 4.2 we
consider High’s behaviour; it turns out that we have to give High some limited
control over events not in H . We bring the threads together in Section 4.3 to
define the information flow quantity of a system, and give some examples in
Section 4.4.

4.1 Low’s strategy and testing equivalence

Low will interact with the system by repeatedly offering a set of events and either
seeing one of them accepted, or seeing them all refused; Low will associate results
with particular sequences of event acceptances and refusals. We will call Low’s
strategy for interacting with a process a test. The precise form of the tests will
reflect the assumptions we make about Low, discussed informally above.

Traditional approaches to testing (e.g. [2, 11, 15]) make use of a test process
SUCCESS , which can perform a distinguished event ω, representing the suc-
cessful completion of a test. We extend this to use test processes of the form
SUCCESS (k), for k ∈ N, that can perform events of the form ω.k (we take
ω.k /∈ Σ), representing successful completion of the test with result k :

SUCCESS (k) =̂ ω.k → STOP .

We represent Low’s behaviour by a process T with alphabet L∪{tock}∪{|ω|};
we define Test to be the set of all such processes. The process will interact with
the system S , and then give results, via ω events; we will therefore consider
compositions of the form (S ‖

L

T) \ L, and consider the results that such a

composition can produce:

results(S ,T) =̂ {k | ∃n ∈ N r 〈 r, tock〉n_〈 r, ω.k , r〉 ∈ R[[(S ‖
L

T) \ L]]}.

Note that the results is a set, because of the possibility of nondeterminism.

7

On testing equivalence

This definition of results invokes a natural equivalence over systems, which we
call testing equivalence, namely that two systems are equivalent if all tests give
the same set of possible results; it also invokes a natural refinement pre-order:

S ≡T S ′ =̂ ∀T r results(S ,T) = results(S ′,T),

S vT S ′ =̂ ∀T r results(S ,T) ⊇ results(S ′,T).

(Note, though, that in general we are interested in whether Low can distinguish
more than two systems.) In this section we consider the testing equivalence
further.

Note, firstly, that the equivalence is the same as may-equivalence [2, 15],
where tests simply succeed or fail (rather than giving a numeric result), and two
processes are may-equivalent if whenever a test can succeed with one process, it
can also succeed with the other.

The testing equivalence is slightly weaker than semantic equality: it ignores

refusals that do not immediately precede tocks. Let
r

s be obtained from s by
replacing all refusals that do not immediately precede a tock with r:

r

︷ ︸︸ ︷
〈X , a〉_s = 〈 r, a〉_

r

s, a 6= tock
r

︷ ︸︸ ︷
〈X , tock〉_s = 〈X , tock〉_

r

s,
r

︷︸︸︷
〈X 〉 = 〈 r〉.

Note that s ∈ R[[P]] ⇒
r

s ∈ R[[P]]. The following lemma shows that testing

equivalence can distinguish processes only on the basis of refusal tests
r

s:

Lemma 1 P ≡T Q ⇔ {
r

s | s ∈ R[[P]]} = {
r

s | s ∈ R[[Q]]}.

The proof from right to left shows that if the right hand side holds, then for all T ,
(P ‖

L

T) \ L and (Q ‖
L

T) \L can perform the same events, so P ≡T Q ; the proof

from left to right constructs a test T that will distinguish P and Q when the
right hand side does not hold. The full proof is in Appendix A.

The lemma shows that testing equivalence fits with our intuition that Low
cannot tell the time with total accuracy, and so can detect that an event is not
available only by seeing it refused when a tock is performed.

To illustrate the difference between semantic equality and testing equivalence,

consider the processes P =̂ (a → STOP u STOP)
1
. STOP and Q =̂ (a →

STOP 2 c → STOP) \ {c}. These are not semantically equivalent, because
〈{b}, a, r〉 ∈ R[[P]] − R[[Q]]; i.e. P can refuse a b and then perform an a, but
Q cannot, because Q performs a in an unstable state. However, the processes

8

are testing equivalent: a test can only detect a b being refused if it is refused
throughout a time unit, up to a tock being performed; after such a tock , the a is
withdrawn by both processes.

In untimed models, may-equivalence is the same as traces equivalence [2]; in
real-time models, it is the same as finite failures equivalence [15]; it is interesting
that in the discrete-time model, the equivalence lies between these two.

4.2 High’s strategy

It would seem natural to model High’s behaviour by a CSP process Q with
alphabet H ∪ {tock}; we write CSPH for the set of such processes. In that case
Low’s view of the system would be given by (P ‖

H

Q) \ H . However, it turns out

that this won’t allow us to model the assumptions about High from Section 3,
especially that in Example 5. In particular, we need to assume that High is able
to arrange for his events to occur either before or after events of Low.

Instead, we take the process Q to represent not only High’s behaviour, but
also the behaviour of the scheduler that resolves which event should occur when
more than one is available. We therefore include Low’s events within the alphabet
of the process Q . Low’s view of the system will then be given by the process

(P ‖
Σ

Q) \ H .

For example, recall the process:

P5 =̂ (l → STOP 2 h → STOP)
1
. STOP

from Example 5. High could pass one value by performing his event h; this is
modelled by the process Q =̂ h → STOP ; the combination ensures that Low’s
event l does not preempt the h. Alternatively, High can pass a different value by
not performing his event; this is modelled by the process Q =̂ l → STOP , which
allows Low to perform his event.

However, we do not want to allow all such processes Q ; in a state of P where
only tocks and events of Low are available, High should not be able to block any
Low events: High can only prevent events of Low from occurring by preempting
them with one of his own events. For example, if P = l → STOP , then the
Q process STOP should not be allowed, but l → STOP or RUN (L) would be
allowed. In order to capture this requirement, we need two pieces of notation:

• We say that a trace s is H-urgent if for every refusal set X that immediately
precedes a tock , we have H ⊆ X ; this will be the case for all traces of the
process P ‖

Σ

Q in the context (P ‖
Σ

Q) \ H .

• We write s[〈X ∩L, tock〉/〈X , tock〉] for the trace that is obtained from s by
replacing every refusal set X that immediately precedes a tock with X ∩L.

9

We therefore restrict ourselves to processes Q satisfying the following condition
for the given P :

∀ s ∈ R[[P ‖
Σ

Q]] r s is H -urgent ⇒ s[〈X ∩ L, tock〉/〈X , tock〉] ∈ R[[P]].

This says that if no H events are blocked by the environment (i.e., s is H -urgent)
then if any events from L are refused, it is because P is refusing those events.

This condition prevents examples like the following:

P =̂ h1 → (l1 → STOP 2 l2 → STOP)
2 h2 → (l1 → STOP 2 l2 → STOP),

Q =̂ h1 → l1 → STOP .

This shouldn’t be allowed: High shouldn’t be able to determine which of l1 and l2
becomes available for Low after h1. This is forbidden by the above condition:
P ‖

Σ

Q has H -urgent refusal trace 〈 r, h1, {l2} ∪ H , tock , r〉, but P does not have

trace 〈 r, h1, {l2}, tock , r〉.
In fact, as explained earlier, we have to consider all ways in which nondeter-

minism in P might be resolved, by considering all refinements of P—that is, all
the ways in which P might act—and so we require that all refinements R of P
satisfy the above equation:

∀R wT P r ∀ s ∈ R[[R ‖
Σ

Q]] r

s is H -urgent ⇒ s[〈X ∩ L, tock〉/〈X , tock〉] ∈ R[[R]].
(1)

The condition is satisfied by the process RUN (L), and so we will make frequent
use of this process when defining strategies for High.

The following lemma shows that under the above condition, considering com-
positions of the form (P ‖

Σ

Q) \ H does not make more pairs of processes distin-

guishable from Low’s point of view than by considering compositions of the form
(R ‖

H

Q ′) \ H for Q ′ ∈ CSPH and R wT P .

Lemma 2 If Q0 and Q1 satisfy equation (1), and (P ‖
Σ

Q0) \H 6≡T (P ‖
Σ

Q1) \H

then there exist R wT P and Q ′
0,Q

′
1 ∈ CSPH such that

(R ‖
H

Q ′
0) \ H 6≡T (R ‖

H

Q ′
1) \ H .

(We conjecture that the lemma can be strengthen so that the result talks about P
rather than a refinement R of P .) This lemma is proved in Appendix A.

4.3 Defining information flow quantity

We presume that High and Low have devised some strategy for passing values
in the range {0, . . . ,N − 1}. What form must that strategy take? We suppose

10

that for each value k that High wants to pass, he will act like some process Q(k),
as above; we will therefore model High’s behaviour as a function of the form2

Q : N → CSP where every Q(k) satisfies equation (1).
Given some particular High strategy Q, Low’s possible views of the system

will be given by {(P ‖
Σ

Q(k)) \ H | k ∈ dom Q}. However, there might be no

strategy for Low that distinguishes all of these. We therefore ask whether a
particular test T for Low distinguishes these processes: we consider the results
obtained by the testing process T when interacting with the above processes, and
ask whether the results obtained are those that High is trying to send.

Recall that we write results(S ,T) for the results obtained by test T when
interacting with system S . When we are talking about a system composed of the
given process and a high level process, we will overload the results function to
take those two processes as separate arguments:

results(P ,Q ,T) =̂ results((P ‖
Σ

Q) \ H ,T).

For example, recall

P1 =̂ h → l → STOP
1
. STOP ,

and consider the strategy defined by:

Q(0) =̂ RUN (L), Q(1) =̂ h → RUN (L),

T =̂ l → SUCCESS (1)
1
. SUCCESS (0).

Then (P1 ‖
Σ

Q(0)) \ H = STOP so we have results(P1,Q(0),T) = {0}; and

(P1 ‖
Σ

Q(1)) \ H = l → STOP so we have results(P1,Q(1),T) = {1}.

We should only consider strategies of High and Low that are compatible, in
the sense that if High wants to send a value k , then Low obtains the result k .
We will write ok(P ,Q,T) to capture this condition:

ok(P ,Q,T) =̂ ∀ k ∈ domQ r results(P ,Q(k),T) = {k} and Q(k) satisfies (1).

For example, the process P1 satisfies this condition with the above strategy.
Given some process P and some strategy represented by Q ∈ N → CSP and

T ∈ Test such that ok(P ,Q,T), the associated information flow is the number
of different values that can be sent, i.e., # domQ. However, as discussed in Sec-
tion 3, particularly Example 3, we want to consider not just P , but also all refine-
ments R of P ; the information flow quantity is then the maximum flow achievable
over all such R, and over all corresponding Q and T (such that ok(R,Q,T)):

IFQ(P) =̂ max{# domQ | Q ∈ N → CSP ∧ T ∈ Test ∧ R ∈ CSP
∧ P vT R ∧ ok(R,Q,T)}.

2The notation A → B represents partial functions from A to B .

11

If the set in the above definition is unbounded, then we will define the information
flow quantity to be infinite.

For example, this definition gives an information flow quantity of 2 for the
process P1, as illustrated by the above Q and T ; clearly, High cannot pass more
information than this, because there are only two ways in which High can interact
with the system.

4.4 Examples

Recall the process

P5 =̂ (l → STOP 2 h → STOP)
1
. STOP .

The appropriate strategy for High and Low to adopt is the following:

Q(0) =̂ RUN (L), Q(1) =̂ h → RUN (L),

T =̂ l → SUCCESS (0)
1
. SUCCESS (1).

Note that Q(1) prevents an initial l from occurring by preempting it with h.
With this strategy we have

results(P5,Q(0),T) = {0}, results(P5,Q(1),T) = {1}.

Note also that the Q(k) processes satisfy equation (1): in particular, P5 ‖
Σ

Q(1)

cannot refuse H until after either (1) the h has occurred, after which Q(1) does
not block events of L, or (2) the timeout has occurred, after which P5 refuses all
of L. Hence this process has an information flow quantity of 2.

As another example, consider

h1 → (l → l1 → STOP 2 l ′ → l1 → STOP)
2 h2 → (l → l2 → STOP 2 l ′ → l1 → STOP)
2 h3 → (l → l1 → STOP 2 l ′ → l2 → STOP)
2 h4 → (l → l2 → STOP 2 l ′ → l2 → STOP).

1
. STOP

An information flow quantity of 3 can be obtained using the strategy

Q(0) =̂ RUN (L), Q(1) =̂ h1 → RUN (L), Q(2) =̂ h2 → RUN (L),

T =̂ l → (l1 → SUCCESS (1) 2 l2 → SUCCESS (2))
1
. SUCCESS (0).

However, no higher information flow quantity can be obtained, for example by
exploiting the l ′ branches: Low has to commit himself to either exploring the
l branches, or exploring the l ′ branches, or maybe nondeterministically searching
either, for example with a test like:

(
l → (l1 → SUCCESS (1) 2 l2 → SUCCESS (2))
2 l ′ → (l2 → SUCCESS (2) 2 l1 → SUCCESS (1))

)
1
. SUCCESS (0).

12

(which would distinguish the High behaviours RUN (L), h1 → RUN (L) and
h4 → RUN (L)); but in no case can Low explore all of the resulting process tree.

This example also shows why we have adopted a testing-style definition, as
opposed to a definition such as #{R[[(P ‖

Σ

Q) \ H]] | Q ∈ CSP} (maybe with

some additional restrictions on Q), that is, the number of different ways that
the process might look from Low’s point of view. Such a definition would have
given an information flow quantity of 5 for the above process, as RUN (L), h1 →
RUN (L), h2 → RUN (L), h3 → RUN (L) and h4 → RUN (L) would all cause
the system to look different from Low’s point of view.

We now consider an example that shows why we insist—via the ok predicate—
that the results caused by a particular Q(k) are precisely {k}: it is not enough
for different Q(k) processes to simply lead to different sets of results. Consider

P =̂

h1 → l1 → STOP
2 h2 → l2 → STOP
2 h3 → (l1 → STOP 2 l2 → STOP)

 1

. STOP

T =̂ (l1 → SUCCESS (1) 2 l2 → SUCCESS (2))
1
. SUCCESS (0)

These give different sets of results for the four high level processes Q(0) =̂
RUN (L), Q(1) =̂ h1 → RUN (L), Q(2) =̂ h2 → RUN (L) and Q(3) =̂ h3 →
RUN (L); however the results from Q(3)—namely 1 and 2—are both results that
could be obtained from other high level behaviours—Q(1) and Q(2)—and so this
does not contribute any additional information flow.

Finally, we consider an example that gives an infinite information flow quan-

tity. Let P =̂ h → l → WAIT 1 ; P
1
. STOP . High can pass an arbitrary value k

by performing k h events:

Q(0) =̂ RUN (L), Q(k + 1) =̂ h → l → WAIT 1 ; Q(k),

T (k) =̂ l → WAIT 1 ; T (k + 1)
1
. SUCCESS (k).

Then this strategy, using the test T (0), will pass an arbitrary value, so the
information flow quantity of this process is infinite.

5 No information flow

In this section we give a number of results about our model and definition. Our
main goal is to understand under what circumstances our definition gives a pro-
cess an information flow quantity of 1—i.e., no information flow.

In [4, 3, 5], Focardi, Gorrieri and Martinelli define several security properties,
jointly termed Non Deducibility on Composition (NDC), which can be written in
CSP as:

P sat NDC =̂ ∀Q ∈ CSPH
r P ‖

H

STOP ≡ (P ‖
H

Q) \ H ,

13

where the nature of the equivalence depends upon the security property in ques-
tion. We argued earlier that testing equivalence is appropriate in our setting, so
we define Testing Non Deducibility on Composition (TNDC) by:

P sat TNDC =̂ ∀Q ∈ CSPH
r P ‖

H

STOP ≡T (P ‖
H

Q) \ H ,

This condition is equivalent to:

∀Q0,Q1 ∈ CSPH
r (P ‖

H

Q0) \ H ≡T (P ‖
H

Q1) \ H .

We propose the following strengthening of TNDC: a process P satisfies Strong
Testing Non Deducibility on Composition (STNDC) as follows:

P sat STNDC =̂ ∀R wT P r R sat TDNC .

Our main result is that our definition gives information flow quantity of 1 to
precisely those processes that satisfy STNDC.

We prefer the condition STNDC to TNDC (and the other nondeducibility on
composition properties) because it overcomes the following objection of Forster
and Roscoe [7]. Let LEAK be any insecure process, and consider the two pro-
cesses LEAK u CHAOS (L) and LEAK ||| CHAOS (L). These processes have
clearly insecure behaviours, coming from LEAK ; however they satisfy TNDC
(and the other nondeducibility on composition properties), because the insecure
behaviour is masked by behaviours of CHAOS (L). These processes do not sat-
isfy STNDC, because they are refined by LEAK .

In [6], Focardi and Rossi introduce the notion of Persistent Non Deducibility
on Compositions, namely that all reachable states of a process satisfy Non De-
ducibility on Compositions. This property appears very similar to Strong Non
Deducibility on Compositions; we intend to investigate the relationship.

If two high level processes can make the system look different from Low’s
point of view, then we can find some testing strategy to give an information flow
quantity of 2.

Lemma 3 If (P ‖
H

Q0) \ H 6≡T (P ‖
H

Q1) \ H then there exist R wT P ,

Q ′
0,Q

′
1 ∈ CSP satisfying equation (1), and T ∈ Test such that

results(R,Q ′
0,T) = {0} and results(R,Q ′

1,T) = {1}.

The proof makes use of the test T from Lemma 1, which distinguishes processes
according to whether or not they have a particular refusal trace s; the proof
constructs a suitable refinement of P , and suitable high level processes, such that
one of the resulting systems will always exhibit the trace s, and the other system
will never exhibit this trace. The full proof is in the appendix.

The following theorem identifies the circumstances under which our definition
identifies no information flow, i.e. gives an information flow quantity of 1:

14

Theorem 4 A process P has information flow quantity 1 iff for all refinements R,
High cannot change the way the process appears to Low:

IFQ(P) = 1 ⇔ ∀R wT P ; Q0,Q1 ∈ CSPH
r (R ‖

H

Q0) \ H ≡T (R ‖
H

Q1) \ H .

The above theorem is equivalent to

IFQ(P) = 1 ⇔ P sat STNDC .

Proof: We prove the contrapositive. In one direction:

¬(∀R wT P ; Q0,Q1 ∈ CSPH
r (R ‖

H

Q0) \ H ≡T (R ‖
H

Q1) \ H)

⇔ ∃R wT P ; Q0,Q1 ∈ CSPH
r (R ‖

H

Q0) \ H 6≡T (R ‖
H

Q1) \ H

⇒
〈
Lemma 3

〉

∃R wT P r ∃R′ wT R ; Q ′
0,Q

′
1 ∈ CSP ; T ∈ Test r

results(R′,Q ′
0,T) = {0} ∧ results(R′,Q ′

1,T) = {1} ∧ Q ′
0, Q ′

1 satisfy (1)
⇒ IFQ(P) > 2.

In the other direction:

IFQ(P) > 2
⇒ ∃R wT P ; Q0,Q1 ∈ CSP ; T ∈ Test r

results(R,Q0,T) = {0} ∧ results(R,Q1,T) = {1} ∧ Q0, Q1 satisfy (1)

∃R wT P ; Q0,Q1 ∈ CSP r

(R ‖
Σ

Q0) \ H 6≡T (R ‖
Σ

Q1) \ H ∧ Q0, Q1 satisfy (1)

⇒
〈
Lemma 2

〉

∃R wT P ; ∃R′ wT R ; Q ′
0,Q

′
1 ∈ CSPH

r (R′ ‖
H

Q ′
0) \ H 6≡T (R′ ‖

H

Q ′
1) \ H

⇒ ¬(∀R wT P ; Q0,Q1 ∈ CSPH
r (R ‖

H

Q0) \ H ≡T (R ‖
H

Q1) \ H).

2

6 Bounded time information flow

Many processes can be used to pass an unbounded amount of information given
sufficient time; however, they might still have a finite rate of information flow. In
this section we extend the work of the previous section to consider the amount of
information passed in some finite interval, and hence define the rate of information
flow.

We can define the results obtainable from a system S with test T before
time t + 1 as follows:

resultst(S ,T) =̂ {k | ∃ n 6 t r 〈 r, tock〉n_〈 r, ω.k , r〉 ∈ R[[(S ‖
L

T) \ L]]}.

15

Note that we only consider observations containing at most t tocks, i.e. those
observations finishing before time t + 1. The following definitions are obvious
adaptations of previous ones.

resultst(P ,Q ,T) =̂ resultst((P ‖
Σ

Q) \ H ,T),

okt(P ,Q,T) =̂ ∀ k ∈ dom Q r resultst(P ,Q(k),T) = {k}
and Q(k) satisfies (1),

IFQt(P) =̂ max{# domQ | Q ∈ N → CSP ∧ T ∈ Test ∧ R ∈ CSP
∧ R wT P ∧ okt(R,Q,T)}.

We can define the long term information flow rate (in bits per time unit) as
follows:

LTIFR(P) =̂ lim
t→∞

log2(IFQt(P))

t
if the limit exists.

Of course, the above definition doesn’t give the whole story. A process that
leaked a gigabyte of information at time 0, but nothing subsequently, would have
a long term information flow rate of zero, but would probably not be acceptable
as a secure system.

6.1 Examples

As a first example, consider P =̂ h → l → STOP . Fix N , and consider the
strategy

Q(k) = WAIT k ; h → l → STOP , for k = 0, . . . ,N − 1

Q(N) = STOP ,

T (k) = l → SUCCESS (k)
1
. T (k + 1), for k = 0, . . . ,N − 1

T (N) = SUCCESS (N).

Then results(P ,Q(k),T (0)) = {k}, for k = 0, . . . ,N , and all of the observations
contain at most N tocks. Clearly, Low cannot distinguish more behaviours than
this within N time units, because he will only ever be able to perform zero or
one l events. Hence IFQN (P) = N + 1, for all N , so the long term information
flow rate is zero.

As another example, consider a processor, shared by High and Low, scheduled
using a round robin scheduler with time quantum q . Scheduling consists of two
phases: an execution phase, where one agent has control of the processor; and a
contention phase, where it is decided who should have the processor next.

Let PROCL and PROCH denote the behaviour of the processor when sched-
uled for Low and High, respectively. During the execution phase, the processor

16

acts like either PROCH or PROCL for a period of q , before being interrupted and
moving to the contention phase:

EXECH =̂ PROCH 4q CONTENTIONL,

EXECL =̂ PROCL 4q CONTENTIONH .

During the contention phase, High and Low can request the processor via
events reqh and reql , respectively. The scheduler will repeatedly offer one req
event, but if it is not accepted within time w , the offer is withdrawn and the
other req event offered. After an execution phase, the processor is first offered to
the other agent.

CONTENTIONH =̂ reqh → EXECH

w
. CONTENTIONL,

CONTENTIONL =̂ reql → EXECL

w
. CONTENTIONH .

Initially, High has priority:

SCHEDULER =̂ CONTENTIONH .

It turns out that High and Low will be able to pass one bit per q + w time
units. Fix t , and let n =̂ b t

q+w
c (this will be the number of bits passable in

time t). The strategy will involve High using the processor to pass a bit 1, and
not using the processor to pass a bit 0. We pass the bits one at a time, least
significant bit first. High’s strategy to pass the value k can be modelled by the
process Q(k) ||| RUN (L) where:

Q(k) =̂ if k mod 2 = 1 then reqh → WAIT (q + w) ; Q(k div 2)
else WAIT (q + w) ; Q(k div 2).

Low’s strategy is to attempt reql events at times of the form w +(q +w)i , and is
modelled by the test WAIT w ; T (0, 0), below. The test accumulates the result
in the parameter r ; the parameter i records the number of bits received so far.

T (i , r) =̂ (reql → WAIT (q + w) ; T (i + 1, r))
w
. (WAIT q ; T (i + 1, 2i + r))

for i = 0, . . . , n − 1,

T (n, r) =̂ SUCCESS (r).

Note that High will succeed in performing reqh at times that are multiples of q+w .
Low will perform reql at times of the form w + (q + w)i if and only if High did
not perform reqh at the corresponding time (q + w)i .

This strategy achieves an information flow quantity of 2n where n = b t
q+w

c,

and so the long term information flow rate is 1

q+w
.

17

7 Conclusions

In this paper we have presented a formal definition of the quantity of information
passed from a high level user to a low level user in a system, based upon the
number of behaviours of High that can be accurately distinguished from Low’s
point of view.

The correct definition proved remarkably difficult to find: many alternative
definitions failed to give the correct values for example processes. The aspect
that proved hardest to get right was that High might be able to prevent events
of Low occurring by preempting them with his own events.

The model appears to be accurate: it gives the expected results for all the ex-
amples considered. We have proved that it agrees with a more intuitive definition
on those processes that exhibit no flow of information.

We consider now a few possible extensions to this work.
It would clearly be useful to have an automated procedure for calculating

the quantity of information flow in a system. We believe there is some scope
for considering all possible High processes that can successfully interact with
the system (i.e. only those High processes that attempt events the system might
actually offer), and all corresponding Low tests (i.e. only those tests that attempt
events the system might actually offer), and identifying which subsets satisfy the
ok predicate. Making this efficient might prove challenging.

It would also be useful to develop more systematic ways of calculating the
quantity of information flow in a given system: proving lower bounds can be
done simply be exhibiting a suitable strategy, but proofs of upper bounds tend
to be rather ad hoc.

As explained in the introduction, we have treated nondeterminism by con-
sidering the worst case, rather than attempting to assign probabilities to the
different possibilities. It would be interesting to compare the two approaches.
However, to do so formally would need a semantic model that correctly treats
the interplay between probabilities and nondeterminism; building such a semantic
model has proved remarkably difficult (most existing models allow nondetermin-
ism in one component of a system to be resolved in a way that depends upon
probabilistic behaviour in another component, even when there has been no flow
of information from the latter component to the former).

We have assumed that Low’s time quantum—the degree of accuracy with
which Low can tell the time—was equal to one time unit. This assumption
might not be valid, so it would be interesting to relax it. All delays in the
system are assumed to be an integer number of time units, and so we cannot
necessarily achieve equality by a rescaling of the time unit, particularly when the
time quantum is greater than one time unit.

In this paper we effectively ignored refusals that do not immediately precede
tocks. We believe that the semantic model that ignores such tocks—and is thus
more abstract than the refusal traces model—is worthy of further study in its own

18

right, because it captures an intuitive notion of process equivalence, as shown by
Lemma 1.

Acknowledgements

I would like to thank Bill Roscoe, Steve Schneider and Philippa Broadfoot for
useful discussions about information flow. This work was partially supported by
a grant from the US Office of Naval Research.

References

[1] P. G. Allen. A comparison of non-interference and non-deducibility using CSP. In
Proceedings of the 4th IEEE Computer Security Foundations Workshop, 1991.

[2] R. de Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83–133, 1984.

[3] Riccardo Focardi. Comparing two information flow security properties. In Pro-
ceedings of 9th IEEE Computer Security Foundations Workshop, pages 116–122,
1996.

[4] Riccardo Focardi and Roberto Gorrieri. A classification of security properties.
Journal of Computer Security, 1995.

[5] Riccardo Focardi, Roberto Gorrieri, and Fabio Martinelli. Information flow anal-
ysis in a discrete-time process algebra. In Proceedings of the 13th IEEE Computer
Security Foundations Workshop, pages 170–184, 2000.

[6] Riccardo Focardi and Sabina Rossi. A security property for processes in dynamic
contexts. In Proceedings of the Workshop on Issues in the Theory of Security
(WITS ’02), 2002.

[7] Richard Forster. Non-Interference Properties for Nondeterministic Processes.
D.Phil, Oxford University, 1999. Available from http://www.comlab.ox.ac.uk/

oucl/research/areas/concurrency/papers/thesis.ps.gz.

[8] James W. Gray, III. Towards a mathematical foundation for information flow se-
curity. In Proceedings of the 1991 IEEE Computer Society Symposium on Research
in Computer Security and Privacy, 1991.

[9] Jonathan Millen. Covert channel capacity. In Proceedings of the 1987 IEEE
Computer Society Symposium on Computer Security and Privacy, 1987.

[10] Joel Ouaknine. Discrete Analysis of Continuous Behaviour in Real-Time Concur-
rent Systems. D.Phil thesis, Oxford University, 2000.

[11] Iain Phillips. Refusal testing. In Proceedings of 13th International Colloquium
on Automata, Languages and Programming, LNCS 226, pages 304–313. Spring
Verlag, 1986.

19

[12] A. W. Roscoe. CSP and determinism in security modelling. In Proceedings of 1995
IEEE Symposium on Security and Privacy, 1995.

[13] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.

[14] P. Y. A. Ryan. A CSP formulation of non-interference. Cipher, pages 19–27, 1991.
Also in Proceedings of the 3rd IEEE Computer Security Foundations Workshop,
1990.

[15] Steve Schneider. Concurrent and Real-time Systems: The CSP Approach. Wiley,
1999.

[16] C. E. Shannon and W. Weaver. The Mathematical Theory of Communication.
University of Illinois Press, 1963.

[17] US Department of Defense. DoD Trusted Computer System Evaluation Criteria,
1985. DOD 5200.28-STD.

[18] J. Todd Wittbold and Dale Johnson. Information flow in nondeterministic systems.
In Proceedings of the 1990 IEEE Computer Society Symposium on Research in
Computer Security and Privacy, 1990.

A Proofs of lemmas

A.1 Proofs about testing

We begin by proving some results about our testing scheme. First, we show that
refining a process reduces the set of results obtained from a given test.

Lemma 5 If P vT Q then ∀T r results(P ,T) ⊇ results(Q ,T).

Proof: Suppose P vT Q , and let T be a test. Then

results(P ,T) = {k | ∃ n ∈ N r 〈 r, tock〉n_〈 r, ω.k , r〉 ∈ R[[(P ‖
L

T) \ L]]}

⊇ {k | ∃ n ∈ N r 〈 r, tock〉n_〈 r, ω.k , r〉 ∈ R[[(Q ‖
L

T) \ L]]}

= results(Q ,T).

2

We now prove Lemma 1:

P ≡T Q ⇔ {
r

s | s ∈ R[[P]]} = {
r

s | s ∈ R[[Q]]}.

Proof of Lemma 1: For the right-to-left implication, we begin by noting:

1. If
r

sP =
r

sQ then

r

︷ ︸︸ ︷
(sP ‖

L

t) =

r

︷ ︸︸ ︷
(sQ ‖

L

t);

20

2. If
r

sP =
r

sQ and sP is L-urgent then sQ is L-urgent;

3. If
r

sP =
r

sQ then

r

︷ ︸︸ ︷
sP \ L =

r

︷ ︸︸ ︷
sQ \ L.

Suppose {
r

s | s ∈ R[[P]]} = {
r

s | s ∈ R[[Q]]} and pick T ∈ Test . Then

r

sP ∈ {
r

s | s ∈ R[[(P ‖
L

T) \ L]]}

⇒
〈
semantic definitions

〉

∃ s ′
P ∈ R[[P]], t ∈ R[[T]] r s ′

P
‖
L

t is L-urgent ∧ sP = (s ′
P

‖
L

t) \ L

⇒
〈
assumption

〉

∃ s ′
P ∈ R[[P]], s ′

Q ∈ R[[Q]], t ∈ R[[T]] r

s ′
P

‖
L

t is L-urgent ∧ sP = (s ′
P

‖
L

t) \ L ∧
r

s ′
P =

r

s ′
Q

⇒
〈
above observations

〉

∃ s ′
P ∈ R[[P]], s ′

Q ∈ R[[Q]], t ∈ R[[T]] r

s ′
P

‖
L

t is L-urgent ∧ sP = (s ′
P

‖
L

t) \ L ∧
r

s ′
P =

r

s ′
Q ∧

r

︷ ︸︸ ︷
s ′
P

‖
L

t =

r

︷ ︸︸ ︷
s ′
Q

‖
L

t ∧ s ′
Q

‖
L

t is L-urgent ∧

r

︷ ︸︸ ︷
(s ′

P
‖
L

t) \ L =

r

︷ ︸︸ ︷
(s ′

Q
‖
L

t) \ L

⇒
〈
taking sQ = (s ′

Q
‖
L

t) \ L
〉

r

sP ∈ {
r

sQ | sQ ∈ R[[(Q ‖
L

T) \ L]]},

and vice versa. Hence

{trace(s) | s ∈ R[[(P ‖
L

T) \ L]]} = {trace(s) | s ∈ R[[(Q ‖
L

T) \ L]]},

and hence results(P ,T) = results(Q ,T) for all T , so P ≡T Q .
For the converse, we prove the contrapositive. Suppose P 6≡T Q . Then

without loss of generality, there is some s such that s ∈ R[[P]] but
r

s /∈ R[[Q]].
Let

r

s = 〈 r, a11, r, a12, . . . , r, a1m1
,A1, tock ,

r, a21, r, a22, . . . , r, a2m2
,A2, tock ,

. . .
r, an1, r, an2, . . . , r, anmn

, r〉.

For convenience, we define a syntactic operator that attempts an event for one
time unit, giving result 0 if it is not accepted:

a
∗
→ T =̂ a → T

1
. SUCCESS (0)

21

We construct a test that will succeed with value 1 after the trace
r

s, but will
succeed with value 0, otherwise:

T =̂ a11

∗
→ a12

∗
→ . . .

∗
→ a1m1

∗
→ (?x : A1 → SUCCESS (0)

1
.

a21

∗
→ a22

∗
→ . . .

∗
→ a2m2

∗
→ (?x : A2 → SUCCESS (0)

1
.
. . .
1
.

an1

∗
→ an2

∗
→ . . .

∗
→ anmn

∗
→ SUCCESS (1)) . . .)

Then results(Q ,T) = {0} but results(P ,T) ⊇ {1}. 2

A.2 Forcing refusal traces

We now prove a technical lemma that shows that given a process P with a par-
ticular refusal trace s, we can construct a refinement R that will always follow s
in a suitable environment; in other words, we can remove all the nondeterminism
that might cause the process to deviate from s.

Lemma 6 Let s ∈ R[[P]]. Then we can construct a process R that testing-
refines P , and that “forces” s; that is, R cannot refuse the events in s, and
cannot perform any of the events of refusal sets in s.

Proof: Let s̄ be obtained from s by replacing each refusal set X such that
s ′_〈X 〉 6 s by X̄ =̂ X ∪∗ {a | s ′_〈 r, a, r〉 /∈ R[[P]]}. Let P after s ′ represent the
behaviour of P following trace s ′:

P after s ′ =̂ {u | s ′_u ∈ R[[P]]}.

Note that P after s ′ is a process provided s ′_〈 r〉 ∈ R[[P]].
Define R =̂ RP(s̄) where:

RQ(〈X 〉) =̂ ?x : Σ − X → Q after 〈X , x 〉
1
. Q after 〈X , tock〉

RQ(〈X , a〉_s) =̂ ?x : Σ − X →
if x = a then RQafter〈X ,a〉(s) else Q after 〈X , x 〉

1
. Q after 〈X , tock〉

RQ(〈X , tock〉_s) =̂ ?x : Σ − X → Q after 〈X , x 〉
1
. RQafter〈X ,tock〉(s).

Then P vT R (it is straightforward to prove by induction that Q vT RQ(s ′)
provided s ′ is maximal, s ′ ∈ R[[Q]]). Further, by construction, R cannot refuse
any events of s, and cannot perform any of the events of refusal sets in s. 2

22

Note that the above lemma cannot be strengthened to talk about refinement
in the standard refusal-testing model. Let P = (a → STOP 2 c → b →
STOP) \ {c}, and let s = 〈 r, a, r〉. Suppose R satisfies the conditions of the
lemma. Then with axiom R3, 〈{}〉 ∈ R[[R]], so 〈{}, a, r〉 ∈ R[[R]] or 〈{a}〉 ∈ R,
giving a contradiction in each case. The above construction would give R =

(a → STOP 2 b → STOP)
1
. b → STOP), which is not a R-refinement, but is a

T -refinement.

Note further that if s ′ ∈ R[[P]] and s =
r

s then
r

s ′ ∈ R[[R]] unless one of the
following holds:

1. s ′ includes an event that is refused in s:

∃ u, u ′, a,A,B r u_〈A, tock〉 6 s ∧ u ′_〈B , a〉 6 s ′ ∧
trace(u) = trace(u ′) ∧ a ∈ A.

2. s ′ includes a refusal including events that could be performed in s:

∃ u, u ′, a,A,B r u_〈B , a〉 6 s ∧ u ′_〈A, tock〉 6 s ′ ∧
trace(u) = trace(u ′) ∧ A ∩ inits(P after (u_〈 r〉)) 6⊆ B .

The following lemma will be useful later.

Lemma 7 Suppose (s ′ \ H) =
r

s_〈 r〉, s ′[〈X ∩ L, tock〉/〈X , tock〉] ∈ R[[P]],
r

s[X ∩ L/X]_s ′′ ∈ R[[P]], for some s ′′, and let R wT P be defined as in Lemma 6

to “force”
r

s[X ∩ L/X]_s ′′. Then
r

︷ ︸︸ ︷
s ′[〈X ∩ L, tock〉/〈X , tock〉] =

r

s ′[〈X ∩ L, tock〉/〈X , tock〉] ∈ R[[R]].

Proof: Suppose not; then by the above observation, we have one of the following:

1. There is some u, u ′, a,A,B with trace(u) = trace(u ′), a ∈ A and

u_〈A, tock〉 6
r

s [X ∩ L/X]_s ′′ ∧
u ′_〈B , a〉 6 s ′[〈X ∩ L, tock〉/〈X , tock〉]

Then a ∈ H (because s ′ \ H =
r

s_〈 r〉 and a 6= tock). But a ∈ A ⊆ L, giving
a contradiction.

2. There is some u, u ′, a,A,B with trace(u) = trace(u ′) and

u_〈B , a〉 6
r

s[X ∩ L/X]_s ′′ ∧
u ′_〈A, tock〉 6 s ′[〈X ∩ L, tock〉/〈X , tock〉] ∧
A ∩ inits(P after (u_〈 r〉)) 6⊆ B .

But s ′ \ H =
r

s_〈 r〉 so we have a = tock , and A = A ∩ L = B ∩ L = B ,
giving a contradiction.

2

23

A.3 Lemma 2

If s is a trace, we write Tr(s) for the “trace process” for s, i.e., the process that
will perform just the events of s:

Tr(〈〉) =̂ STOP ,

Tr(〈a〉_s ′) =̂ a → Tr(s ′),

Tr(〈tock〉_s ′) =̂ WAIT 1 ; Tr(s ′).

We now prove Lemma 2: if Q0 and Q1 satisfy equation (1), and

(P ‖
Σ

Q0) \ H 6≡T (P ‖
Σ

Q1) \ H

then
∃R wT P ; Q ′

0,Q
′
1 ∈ CSPH

r (R ‖
H

Q ′
0) \ H 6≡T (R ‖

H

Q ′
1) \ H .

Proof of Lemma 2: Consider P ‖
H

STOP ≡T (P ‖
H

STOP) \ H . This cannot

be equivalent to both (P ‖
Σ

Q0)\H and (P ‖
Σ

Q1)\H , so without loss of generality

assume

P ‖
H

STOP 6≡T (P ‖
Σ

Q1) \ H .

We will take Q ′
0 =̂ STOP . We consider cases as follows:

• Case there is some s ∈ R[[(P ‖
Σ

Q1) \ H]] such that
r

s /∈ R[[P ‖
H

STOP]].

Then there is some trace s ′ such that s ′ \ H = s, s ′ is H -urgent, and
s ′ ∈ R[[P ‖

Σ

Q1]]. Hence s ′[〈X ∩ L, tock〉/〈X , tock〉] ∈ R[[P]] by equation (1).

Let R =̂ P and Q ′
1 =̂ Tr(trace(s ′) |̀ H). Then s ′ ∈ R[[P ‖

H

Q ′
1]] and so s ∈

R[[(P ‖
H

Q ′
1) \ H]]. Hence (P ‖

H

STOP) \ H 6≡T (P ‖
H

Q ′
1) \ H , as required.

• Case there is some s_〈 r, a, r〉 ∈ R[[P ‖
H

STOP]] such that
r

s_〈 r, a, r〉 /∈

R[[(P ‖
Σ

Q1) \ H]]. Take s minimal, so
r

s_〈 r〉 ∈ R[[(P ‖
Σ

Q1) \ H]].

Then
r

s[X ∩L/X]_〈 r, a, r〉 ∈ R[[P]]. Let R wT P be as in Lemma 6 such that
r

s[X ∩ L/X]_〈 r, a, r〉 is “forced”. Then
r

s[X ∩ L/X]_〈{a}, tock , r〉 /∈ R[[R]]
so

r

s_〈{a}, tock , r〉 /∈ R[[(R ‖
H

STOP) \ H]].

Now,
r

s_〈 r〉 ∈ R[[(P ‖
Σ

Q1) \ H]], so there is some s ′ such that s ′ \

H =
r

s_〈 r〉, s ′ is H -urgent, and s ′ ∈ R[[P ‖
Σ

Q1]]. Hence s ′[〈X ∩

24

L, tock〉/〈X , tock〉] ∈ R[[P]] by equation (1). Then from Lemma 7 we have
r

s ′[〈X ∩ L, tock〉/〈X , tock〉] ∈ R[[R]].

Let Q ′
1 =̂ Tr(trace(s ′) |̀ H); then

r

s ′ ∈ R[[R ‖
H

Q ′
1]], and hence

r

s_〈 r〉 ∈

R[[(R ‖
H

Q ′
1) \ H]]. Now,

r

s_〈 r, a, r〉 /∈ R[[(P ‖
Σ

Q1) \ H]], so init s ′_〈 r, a, r〉 /∈

R[[P ‖
Σ

Q1]] (init s ′ represents trace s ′ with the last element removed) so

init s ′_〈 r, a, r〉 /∈ R[[R ‖
Σ

Q1]] because R wT P . Hence init s ′_〈{a}, tock , r〉 ∈

R[[R ‖
Σ

Q1]] so init s ′[〈X ∩L, tock〉/〈X , tock〉]_〈{a}, tock , r〉 ∈ R[[R]] by equa-

tion (1). Hence
r

s_〈{a}, tock , r〉 ∈ R[[(R ‖
H

Q ′
1) \ H]]. Hence (R ‖

H

Q ′
1)\H 6≡T

(R ‖
H

STOP) \ H , as required.

• Case there is some s_〈A, tock , r〉 ∈ R[[P ‖
H

STOP]] such that A ∩ L 6= {}

and
r

s_〈A, tock , r〉 /∈ R[[(P ‖
Σ

Q1) \ H]]. Take s minimal, so
r

s_〈 r〉 ∈

R[[(P ‖
Σ

Q1) \ H]].

Then
r

s[X ∩ L,X]_〈A ∩ L, tock , r〉 ∈ R[[P]]. Let R wT P be as in Lemma 6

such that
r

s[X ∩ L/X]_〈A ∩ L, tock , r〉 is “forced”. Then for all a ∈ A ∩ L,

we have
r

s[X ∩ L/X]_〈 r, a, r〉 /∈ R[[R]], so

∀ a ∈ A ∩ L r

r

s_〈 r, a, r〉 /∈ R[[(R ‖
H

STOP) \ H]].

Now,
r

s_〈 r〉 ∈ R[[(P ‖
Σ

Q1) \ H]], so there is some s ′ such that s ′ \H =
r

s_〈 r〉,

s ′ is H -urgent, and s ′ ∈ R[[P ‖
Σ

Q1]]. Hence s ′[〈X ∩ L, tock〉/〈X , tock〉] ∈

R[[P]] from equation (1). Hence from Lemma 7
r

s ′[〈X ∩L, tock〉/〈X , tock〉] ∈

R[[R]]. Then
r

s ′ ∈ R[[R ‖
Σ

Q1]], so
r

s_〈 r〉 ∈ R[[(R ‖
Σ

Q1) \ H]]. But
r

s_〈A, tock , r〉 /∈ R[[(R ‖
Σ

Q1) \ H]] (because R wT P). Hence, there is

some a ∈ A ∩ L such that
r

s_〈 r, a, r〉 ∈ R[[(R ‖
Σ

Q1) \ H]]. Then there

is some s ′′ such that s ′′ is H -urgent, and s ′′ ∈ R[[R ‖
Σ

Q1]]. Hence

s ′′[〈X ∩ L, tock〉/〈X , tock〉] ∈ R[[R]] by equation (1). Let Q ′
1 =̂ Tr(trace(s ′′)|̀

H), so s ′′ ∈ R[[R ‖
H

Q ′
1]], and so

r

s_〈 r, a, r〉 ∈ R[[(R ‖
H

Q ′
1) \ H]]. But

r

s_〈 r, a, r〉 /∈ R[[(R ‖
H

STOP) \ H]], so (R ‖
H

Q ′
1) \ H 6≡T (R ‖

H

STOP) \ H ,

as required.

2

25

A.4 Lemma 3

We now prove Lemma 3, that if two high level processes can make the system
look different from Low’s point of view, then we can find some testing strategy
to give an information flow quantity of 2:

If (P ‖
H

Q0) \ H 6≡T (P ‖
H

Q1) \ H then there exist R wT P ,

Q ′
0,Q

′
1 ∈ CSP satisfying equation (1), and T ∈ Test such that

results(R,Q ′
0,T) = {0} and results(R,Q ′

1,T) = {1}.

Proof of Lemma 3: Following Lemma 1, suppose

s ∈ R[[(P ‖
H

Q1) \ H]] and
r

s /∈ R[[(P ‖
H

Q0) \ H]],

and let T be as in Lemma 1. The results of that lemma show

results((P ‖
H

Q0) \ H ,T) = {0} and results((P ‖
H

Q1) \ H ,T) ⊇ {1}.

However, we cannot be sure that 0 is not a member of results((P ‖
H

Q1) \ H ,T),

because of the possibility of nondeterminism.
Suppose s corresponds to the trace s ′ of P ‖

H

Q1, and the traces sP and sQ

of P and Q respectively, so that trace(sP) = trace(s ′), and the pre-tock refusals
of sP include all the events of L from the corresponding refusal of s ′.

Let R wT P be—as in Lemma 6—such that s ′ is “forced”. Let Q ′
1 =̂ Q(

r

s ′)
where

Q(〈 r, l〉_s ′′) =̂ l → Q(s ′′) 2?l ′ : L − {l} → RUN (L), for l ∈ L,
Q(〈 r, h〉_s ′′) =̂ h → Q(s ′′), for h ∈ H ,

Q(〈A, tock〉_s ′′) =̂ RUN (L)
1
. Q(s ′′),

Q(〈 r〉) =̂ RUN (L).

Consider (R ‖
Σ

Q ′
1) \ H with the test T . By construction, the combination of Q ′

1

and T force R to perform the trace s ′:

• In states where an event from H is due next, Q ′
1 forces it to happen;

• In states where an event from L is due next, Q ′
1 prevents events from H

from happening, and T selects the appropriate event from L (L is hidden,
so this event must happen–silently–rather than a tock);

• In states where a tock following refusal X is due next, R prevents all events
in X ∩ L, Q ′

1 prevents all events from H so R ‖
Σ

Q ′
1 refuses X ∪ H , so

(R ‖
Σ

Q ′
1) \ H refuses X , so the test selects the tock .

26

Further, R cannot refuse any of these events. Hence

results(R,Q ′
1,T) = {1}.

Note that Q ′
1 satisfies equation (1): after H -urgent traces, Q ′

1 must be refusing H ,
and in such states it offers all of L.

Finally, let Q ′
0 =̂ Q0 ||| RUN (L). Note that Q ′

0 satisfies equation (1). Then

(R ‖
Σ

Q ′
0) \ H = (R ‖

H

Q0) \ H wT (P ‖
H

Q0) \ H ,

and so

results(R,Q ′
0,T) = results((R ‖

Σ

Q ′
0) \ H ,T) ⊆ results(P ‖

H

Q0) \ H ,T) = {0}

by Lemma 5. But, by construction, T always gives at least one result, so

results(R,Q ′
0,T) = {0}.

2

27

