
What is intransitive noninterference?

A.W. Roscoe

Oxford University Computing Laboratory

Wolfson Building, Parks Road

Oxford OX1 3QD, UK

M.H. Goldsmith

Formal Systems (Europe) Ltd

Keble Court, 26 Temple Street

Oxford OX4 1JS, UK
�

Abstract

The term “intransitive noninterference” refers to the in-

formation flow properties required of systems like down-

graders, in which it may be legitimate for information to

flow indirectly between two users but not directly. We exam-

ine the usual definition of this property in terms of a modi-

fied purge function, and show that this is a distinctly weaker

property than an alternative we derive from considerations

of determinism.

1 Introduction

The term ‘‘noninterference’’ (closely analogous to, and

often synonymous with, others such as ‘‘noninference’’ and

‘‘independence’’) refers to a situation in which a system

has a number of users, and it is desired that the actions of

one of these users have no effect on what another sees. The

main motivating application is usually multi-level security

(MLS) in which we are presented with a security policy:

a relation between the users setting out which information

flows are permissible (generally from low to high level)

and thereby which are not (from high to low). In this

domain, we end up trying to specify and prove that high-

level users cannot ‘‘interfere’’ with low-level ones. In

slightly different circumstances we might be concerned

about potential disruption of a high-level user by low-level

ones1, so that the direction of undesirable interference gets

reversed. For simplicity, in this paper we will, except when

specifically stated otherwise, concentrate on the former, and

assume we are attempting to prevent high-level information

being revealed to low-level users.

A wide range of theories have been developed to support

reasoning about noninterference, with a view to giving pre-

cise mathematical characterisations of the security and other

�

This paper is reproduced from the Proceedings of the 1999 IEEE

Computer Security Foundations Workshop.
1These might be the actions of an untrusted user, or even events

representing the random occurrence of system faults.

properties that arise. Directly or indirectly these always in-

volve studying how the range of low-level behaviours is

affected by high-level actions. The semantic arenas in

which these have been developed include the following:

� State machines [5] that make (possibly null) inputs

and outputs with users on each cycle; the definitions of

noninterferenceusually being based on purge functions

that project behaviours into low-level actions only, or

on the idea of unwinding in which each individual

high-level action is specified to have no effect on the

low-level view.

� Process algebras offer a more free-form model of

interaction, often with handshaken communications,

but noninterference properties are sometimes presented

as complex-looking predicates on semantic models

with no obvious route to automation.

�
Trace theory [12], represents something of a compro-

mise.

The authors have always preferred the process-algebra

approach, since the essence of noninterference (or the lack

of it) is in the interactions between a system and its users, and

process algebras provide highly-developed theories specif-

ically developed to handle the subtleties of interaction and

communication. In [16] (and see also [14, 17]), the first

author and others proposed a definition of noninterference

based on the determinism of the low-level view: the ac-

tions of higher-level users are turned into nondeterministic

choices by means of abstraction mechanisms, and if the

low-level view is then deterministic we can conclude that

it does not depend on anything that the high-level users

do. This formulation (which has well-understood links with

other process algebra versions, but avoids the difficulty that

the refinement of a secure process may not be secure) has

been the key to successful automated checking on FDR [3],

as it is possible to automate efficient decision procedures

for the CSP formulation of determinism. It is also possi-

ble, by varying the form of abstraction used on high-level

behaviour, to make distinctions between the influences of

1

high-level inputs and high-level outputs (a criticism that

had previously been made of process algebra formulations).

The most extensive study of the compositional and other

properties of this type of noninterference can be found in

[20].

Just about every initial approach to this subject begins

by simplifying the problem to one where there are just two

users -- one high and one low -- and analysing potential

flows from one to the other. This is quite sufficient when the

relation between users that defines permitted information

flow -- A � B if information from A can flow to B -- is

transitive (i.e., A � B
�

B � C � A � C). (We will always

assume the relation is reflexive, namely that A � A for all A.)

Fixing A, we can then be confident that no information-flow

is allowed from the set of users � B � B �� A � to any of the

users in � C � C � A � (or else such a C would provide a link

between the given B and A in an application of the transitive

rule). It follows that in order to check potential information

flows to A we can divide up the alphabet of interaction of

our system into two compound ‘‘users’’, one for each of

these two sets.

Since the partition of the interface of a system for

security purposes may well not exactly coincide with the

division into users, we will usually refer to the members of

these partitions as ‘‘domains’’. In the case where we are

considering a CSP process P with alphabet A, these domains

will just be subsets of A which partition it. A security policy�
is then a specification of what these domains are plus the

information flow relation � .

It seems intuitively obvious that the relation � must

be transitive: how can it make sense for A to have lower

security level than B, and B to have lower level than C,

without A having lower level than C? But this argument

misses a crucial possibility, that some high-level users

are trusted to downgrade material or otherwise influence

low-level users. Indeed, it has been argued that no large-

scale system for handling classified data would make sense

without some mechanism for downgrading information after

some review process, interval (e.g., the U.K. 30-year rule) or

defined event (the execution of some classified mission plan,

for example). Largely to handle this important problem,

a variety of extended theories proposing definitions of

‘‘intransitive noninterference’’ have appeared, though we

observe that this term is not really accurate, as it is in fact the

interference rather than the noninterference relation which

is not transitive. Perhaps the best way to read the term is as

an abbreviation for ‘‘noninterference under an intransitive

security policy’’.

The objective of this paper is to understand what is

meant by intransitive noninterference, and to place it in the

context (both theoretical and automation) of our existing

determinism-based work.

The rest of this paper is constructed as follows: in

the next section we summarise the CSP/determinism for-

mulation of noninterference and put it context. We then

survey previous work on intransitive noninterference, and

build determinism-based analogues of some as well as a

condition inspired directly by the intuition underlying the

determinism formulation of noninterference. We show how

these conditions can be checked automatically using tech-

niques similar to those developed for earlier ‘‘transitive’’

properties.

2 A review of noninterference conditions

Definitions of noninterference based on state machines

are usually in terms of either or both of the ideas of purging

and unwinding. Purging involves applying a function to

the history of the system up to some point which removes

all those parts (typically communications with high-level

agents) that should not influence what a given agent A

sees. Usually the definition of noninterference can be

paraphrased by the statement that the purged history is still

a valid history of the system, and leads to a state which

looks identical to A. Unwinding, on the other hand, looks

at individual steps and asserts that each high-level action

leaves the aspects of the system which affect A unchanged. It

is frequently claimed that purge-based definitions are more

intuitive, and that unwinding-based definitions are more

amenable to automated proof. Therefore many theorems

have been proved showing that a given notion of unwinding

implies a corresponding purge-based definition. These

definitions are generally unproblematic in the context of

deterministic machines (where the machine’s behaviour is

completely determined by its initial state and inputs to date)

but can generate debating points when they are applied to

nondeterministic systems. In particular it is then quite likely

that, where a purge definition of security is formulated in

terms of behaviours from a fixed initial state rather than from

all states, it will pass more processes than the corresponding

unwinding one thanks to essentially the same example as

the Chaos �
	����� one discussed below for CSP.

As discussed in the introduction, many researchers have

chosen to formulate noninterference properties in the world

of process algebra. The most frequently used process al-

gebra for this purpose has been CSP (e.g., [9, 19, 7]),

perhaps because it offers semantic models that apparently

lend themselves well to definitions which mimic the above.

For example we can specify conditions (essentially those

of [19, 7]) on the set traces � P � of a process’s finite com-

munication sequences which closely mimic the purge and

and unwinding definitions for state machines quoted above

(H and L being respectively the sets of high and low level

actions):

���
s � traces � P ��� s � H � traces � P � � � P � s ����� L �

� P ��� s � H � ���!� L

���
s � traces � P ��� � h � H � s ��� h � � traces � P �
�

traces � P � s � � L ��� traces � P � s
���

h � � � L �
where L � is the set of finite sequences formed from L, s � H

is the trace s with all members of H deleted, P � s represents

the process that behaves like P after it has performed the

trace s, and � P � s ��� is the set of events P can perform

immediately after completing the trace s. The first of these

(purge) says that the set of events that P offers the low-level

user are exactly the same as though the high-level user had

never communicated anything. The second (unwinding)

says that a high-level action never changes how the process

looks to the low-level user (in this formulation on the

assumption that no further high-level action occurs). These

definitions, as well as several alternative formulations, are

equivalent.

The study of nondeterminism is inherent in concurrency,

as it arises naturally from the ways in which parallel combi-

nations of processes behave. Nondeterminism can be said to

arise in a communicating system when, after a given trace,

the set of options that the process offers its environment

might be different on different occasions. In particular, a

potentially nondeterministic system is not adequately de-

scribed by its set of traces. Therefore all process algebras

employ semantic devices to make more subtle distinctions

than those offered by traces, and in the case of CSP this is

done using failures (combinations � s � X � of a trace s and a

set of events X that the process can refuse to communicate

after s) and divergences (traces s on which the process can

engage in an infinite unbroken sequence of invisible (�)
actions).

It is straightforward to reformulate the definitions given

above into these more sophisticated models, as was done for

example in [19]. Doing so, however, creates problems both

of a practical and intellectual nature. The practical prob-

lem (in fact shared by the trace definitions given above)

is that we end up with conditions which do not appear

to be easily addressable on the automated model checkers

(like CSP’s FDR) which have been so successful in recent

years in making process algebras usable. The intellectual

problem comes from the fact that we encounter the refine-

ment paradox: it is possible to have a process P which is

secure and a refinement Q of it which is not. Consider for

a moment the most nondeterministic divergence-free CSP

process ChaosH � L, where H and L are respectively the high

and low alphabets. Most theories would deem this secure,

but since every divergence-free process refines it there are

evidently many insecure processes that do. While we might

not worry about the abstract process ChaosH � L, we might

well worry about the equivalent process

ChaosH � L �
	�����
where � is the nondeterministic choice operator and 	 �� �
is any insecure process such as a perfect channel from high

to low. Certainly the conventional understanding of what

nondeterminism means in process algebras makes it far more

natural to consider this insecure than secure. The trouble

is that a theory which makes one process secure must also

make all equivalent ones secure! Subtly different problems

appear if we consider the process ChaosL � 	 �� � , which

never communicates anything with H at all unless it chooses

the leaky alternative. For extensive discussion of these

issues, see [14].

It is perhaps true to say that nondeterminism creates

difficulties for formulations of noninterference in either a

state-machine world or that of process algebra, but that

the difficulties are less escapable in the latter mainly be-

cause it comes with more fixed notions of what things like

refinement and process equivalence mean.

In [16], an alternative CSP formulation of security was

proposed, based explicitly on process algebraic ideas rather

than being a translation of ones from elsewhere. This was

to create, using abstraction operators, a process 	 H � P � that

represents what a process P looks like to a user who cannot

see the events H, and to define that P is secure if 	 H � P � is

deterministic. The intention is that the abstraction procedure

should turn all the choices that the high-level user makes

into nondeterministic choices internal to 	 H � P � . If any

nondeterminism is visible at the outside this might well be

as a result of these new choices and represent a way of

transmitting information from high to low. On the other

had, if 	 H � P � is deterministic, then we can be sure that

nothing high does will (at least in the terms described by

the semantic model being used) affect what low sees.

Two different abstraction operators are used, the choice

depending on whether it is assumed that the handshaken

model of communication applies to all high actions (specifi-

cally, whether these are all delayable by the user) or whether

some signal or output actions S (such as indicator lights or

information being printed on a screen) are not delayable.

These are respectively lazy abstraction
 H � P � and mixed

abstraction � S
H � P � . The definitions of these operators

given in [16, 14], in terms of masking H actions by in-

terleaving, evolved in [15] to the following, equivalent

for all the security definitions but superior for other pur-

poses. For a divergence free, finitely nondeterministic and

non-terminating (i.e., without the event �) process P:

�
 H � P � � � P
H

ChaosH � � H

� � S
H � P � � � P

H � S ChaosH � S � � H

The effect of the hiding operator � H is to conceal the high

actions that occur from the environment, as we are forming

the view of what the process looks like without them. The

role of the parallel compositions with Chaos is to reflect

the fact that the high-level user need not offer any of the

actions he or she can delay. If the high action h can be

delayed, then the process h
�

l
�

STOP might look to low

either like STOP or at least the availability of l might be

much delayed, in either case conveying information to low

about high behaviour. The above definitions are actually

those from the stable failures model
�

for CSP, though

the lazy abstraction of allowed P is always divergence-free

and mixed abstraction is only allowed when P � � S � H �
is divergence-free. We give these because they are the

most practical for automation purposes; for alternatives and

a discussion of the relationship between abstraction and

choice of model, see [15].

These two definitions immediately give rise to definitions

of noninterference: P is respectively lazily (
 INDH � P �) or

mixed independent (� INDS
H � P �) if the processes
 H � P �

and � S
H � P � are deterministic. Lazy independence is pre-

cisely equivalent to the purge and unwinding definitions

given above when P is deterministic, but much more severe

when P is nondeterministic. Our new definitions are closed

under refinement, and thereby avoid the refinement paradox.

What this means is that they only pass processes which must

behave securely, and therefore fail some secure processes

because there are semantically equivalent processes whose

security, like that of ChaosH � L � 	����� , is questionable.

In other words, our conditions err on the side of caution.

It is certainly the case that in order to assess the security of

nondeterministic CSP processes accurately, it is necessary

to use semantic models that are significantly finer than those

traditionally used for CSP. The best-known attempts at using

finer models are those of Focardi and Gorrieri [1, 2] (in a

modified CCS) which again have the property of coinciding

with all the other definitions on deterministic processes,

and use the transition system models of CCS with weak

and strong bisimulation equivalences as their methods of

determining process equivalence (e.g., BNDC, BSNNI and

SBSNNI). Unfortunately even these conditions pass some

questionable processes related to the ChaosL � 	 � ��
example, as shown by Forster [4] who goes on to offer some

stronger conditions. But the latter can again be accused

of over-caution, since the standard transition system model

does not contain sufficient information to tell us the source

of nondeterminism. It seems certain that any model that is

capable of giving a proper treatment of this subject must

retain many more details about nondeterministic choices (for

example the form they take and what mechanism resolves

each) than we have been used to recording.

Because of this continuing uncertainty about the right for-

mulation for nondeterministic P, and because the
 INDH � P �
and � INDS

H � P � conditions are efficiently decidable on

FDR, we decided to address intransitive noninterference

properties by looking for analogues of these. Since these

conditions are based on a binary partition of the alphabet, a

simplification which, as discussed in the introduction, fails

in the case of intransitive security policies, we certainly do

have some work to do.

From here on we will concentrate on formulations of

conditions within the language of CSP, to make direct

comparisons easier. We are, however, confident that the

basic issues we raise are independent of this choice.

3 A critique of ipurge

The main motivating examples for intransitive noninter-

ference are downgrading, in which a trusted individual is

permitted to move files from high to low classification, and

other similar cases in which agent A can only influence B

through a highly defined route (an assured pipeline) such as

an encrypter2 or a certification service (one which is allowed

to determine whether or not B can see the information).

In order to understand how different theories relate to

this, let us examine a pair of simple example processes

of this type. First, a file system with a downgrader: let’s

suppose we have a set of users U, and a function clearance

from this set to a partial order of security levels � L ����� .
Similarly, there is a set F of filenames, and a mapping

(which we are going to allow to vary) from F to L. We will

assume that users may only write to files at their own level,

and may read from files that are at their own level or below.

A realistic operation which will be interesting later on is the

copy operation which allows a user to copy data between

files at his or her own level. In addition, there is a special

interface for a trusted downgrader agent (though, in general,

one could imagine there being a family of downgrading

agents with different privileges) which can inspect files and

decide to reclassify them to lower security levels. A simple

CSP description of this process is given below:

FS � cl � fv � �
readreq � � u � f ����� � u � f � ���
	����������
� � u �����
	 � f � ��� fv � u ��

FS � cl � fv ��
write � � u � f ����� � � u � f � ���
	������������ � u � ���
	�� f � ��� v�

FS � cl � fv � v � f � ��
copy � � u � f � � f � ��� � � � u � f � � f � � ���
	����������
� � u � ���
	�� f � �

���
	�� f � � ��
FS � cl � fv � fv � f � � � f ��� ��! �" ���� � f � fv � f � � FS � cl � fv ��! �#�$ � " �� �%� f � c ��� c � c & cl � f � � � FS � cl � c � f � � fv �

Our second example is of a process that guards a channel

ensuring that only suitable data gets through: it is assumed

that it has some internal mechanism by which it decides,

but we have implemented this by a nondeterministic choice.

Data is input on channel in, then either sent on via channel

2The motivation here is that a high-level agent who encrypts data

effectively downgrades it, even though in most mathematical senses the

information content remains the same.

out or returned to its sender if deemed unsuitable

GUARD � in � x � � out � x � GUARD

� return � x � GUARD �
This process really only represents the intermediary; ques-

tions of noninterference will arise best once it is connected

to a producer, and a consumer, of the information.

The formal definitions (e.g,[13, 21]) of intransitive non-

interference in the literature that we have discovered all

have their roots in that of [18] (which was itself influenced

by [6, 8]) are all based on the state-machine model, and

are very similar to each other. They are all based on purge

functions in which all actions are retained that have a tran-

sitive causal link through the trace under consideration to

the agent whose view is being considered. In other words,

if A � B and B � C but A �� C, then the purge (frequently

termed ipurge) from C’s perspective of the trace
�
a � b � a �

would, with the obvious assignments of agents to actions,

be
�
a � b � since there is a legitimate route for the first a but

not the second to influence C. This, prima facie, seems very

reasonable, as plainly the a before b may have influenced

it (and hence C), and the one after has no legitimate route

for influencing C. We believe that the motivation for this

definition may well have been the fact that it is reasonable

to specify that the resulting purge function does actually

generate a trace of any reasonable process meeting the

noninterference requirements. For example, consider the

following trace of our downgrader process in which there

are just two security levels and two users, and a file f with

initial data
�

and initial security level hi.

write � � hugh � f � � �
downgrade � f � lo
read � � lois � f � � �

This is a perfectly legitimate trace, and ipurge-ing it with

respect to level lo does not change it. If, however, the purge

function had removed the initial event things would have

been different, as

downgrade � f � lo
read � � lois � f � � �

is not a trace of the system. In other words, this ipurge

function retains enough information fully to explain the

events seen at low level in terms of the overall behaviours

of the system.

But this definition also has its problems. Let us suppose

that our implementation of the file system were erroneous,

and the event intended to downgrade the level hi file f � to

level lo has the effect of downgrading another f � as well.

Then our system would have the trace

write � � hugh � f � � � �
downgrade � f � � lo
read � � lois � f � � � �

which we would regard as generating an unwanted infor-

mation flow. However, the ipurge function would, on the

assumption that the only security domains were the secu-

rity classifications (plus the downgrader) leave this trace

alone and the definition of noninterference based on ipurge

would fail to catch the leak. The problem here is that

the interference that this trace causes to Lois is certainly

accountable for by things Hugh did before the downgrader

acted, but unfortunately not the things that were intended by

the downgrader to influence him. In other words, anything

the downgrader does is permitting all information which

can influence it to pass on to Lois, irrespective of what

the downgrader actually intended. Thus we have failed to

capture the essence of what downgrading is all about.

This particular problem can be repaired by dividing the

security domains into many pieces. It is simplest if we ignore

two of the channels of our file system: copy and dgread.

It is then necessary to have two for each file/classification

pairing, one Uc � f for the users at that level’s operations on the

file, and one Dc � f for downgradings of the file to that level.

The appropriate security policy is then that no information

flow is allowed between any pair of domains associated

with different files, or directly from Uc � � f to Uc � � f unless

c � � c � . Uc � � f
� Dc � � f for all c � and c � , and Dc � � f

� Uc � � f

just when c ��� c � . The misbehaviour discussed above

then violates the ipurge-based security condition because it

contains information flow between files.

To include the dgread actions (which plainly should

not, in themselves, influence any ordinary user) we can

introduce a further, domain (or perhaps one for each file)

which can be influenced by all others (of that file) but

influence no others. The copy action clearly generates an

information flow between files: it is possible to deal with

this by allowing these to provide the same sort of intransitive

bridge between files as the downgrading actions do between

levels. Thus we have apparently been forced to divide up

the security levels into subdomains, and to have a part of

the security policy that is intransitive quite apart from the

pieces directly concerned with the downgrader.

Unfortunately, even the complicated security policy de-

scribed above is not adequate for ensuring that a system with

the given alphabet does not generate undesired information

flows. Suppose that some bug in the system means that

downgrading a file reverts the value of the file to the most

recent back-up (and that a back-up occurs at every write).3

Then we would have the trace

write � � hugh � f � � secret

write � � hugh � f � � public

3A more complex, but perhaps more plausible, instance of the same

type of behaviour would be in a distributed file system in which files can

temporarily have multiple values during an update. One can imagine a file

might be downgraded during such a time, perhaps temporarily making an

out-of-date and still secret value available at some points in the network.

GUARD
O

L R

Figure 1. Network with intended assured
pipeline

downgrade � f � lo
read � � lois � f � � secret

which seemingly carries undesired information flow: pre-

sumably the downgrader wanted to downgrade the contents

of the file at the point of the downgrade action. However,

because there is no information flow between files, this trace

would be left alone by ipurge in even the refined policy, and

this behaviour would be passed. This illustrates the fact that

this definition of security permits all information contained

in the trace of high-level actions prior to downgrading to be

passed to low level, rather than the much more controlled

information flow desired. We cannot see how the security

domains could reasonably be re-worked to catch this type

of flow.

We would argue that the ipurge definition makes sense

as an explanation of the behaviour of a downgrading sys-

tem which we already fully understand, in the sense that

it represents a natural generalisation of the definition of

transitive noninterference that it will satisfy. However, it

has deficiencies when it comes to deciding whether the

information flows contained in a process purported to be a

downgrading system are limited to what we might expect.

The situation is rather similar with the other example.

If it is part of a network as shown in Figure 1, we might

reasonably require that no information passes from the users

on the left to those on the right other than via GUARD. The

natural thing to do is to study the relationship between the

views of the system in the set L and R of events used

by these two classes respectively, and the outputs O of

GUARD. Plainly it is legitimate for L to influence O, and O

to influence R, but not for L to influence R directly.

Now if the network were actually built as in Figure 2,

we would have nothing to worry about: GUARD has the

above property by construction. So the information flow

analysis is only an issue when the more complex picture

of Figure 1 is at hand, and physically, at least, there are

other potential channels that we want to ensure either are

not there or convey only information in any case allowed

by GUARD. The problem with the ipurge definition here

L R
GUARD

O

Figure 2. Assured pipeline by construction

is that again each time GUARD does anything it permits

all information contained in all preceding L interactions to

be passed (via some other route) to R, even if only a small

proportion of this is contained in the O history.

In both cases the problem is simply that the ipurge defini-

tion does not allow for the possibility that the intermediary

may want to be selective about which of the information

that has influenced it is passed on.

4 A determinism-based formulation

One of the advantages of the determinism-based for-

mulation of information flow is that it gives an entirely

different perspective on the problem. Thus, when we were

thinking about how to formulate intransitive noninterference

in terms of determinism we attempted to create the most

natural specification from this different viewpoint though

initially we expected that (as had been the case with transi-

tive noninterference) that we would end up with a definition

that would coincide for many cases. As we shall see, we

end up with a rather different notion.

For simplicity, let us initially consider the case of a

process P with three users A, B and C, with information

allowed to flow between any pair of them except A �� C. In

trying to detect the potential for information flow from A to

C through P there are two obvious views of the process we

could consider.4 The first is
 A � B � P � which is the view of C

alone, and the second is
 A � P � in which just the actions of A,

whose actions are not meant to create any nondeterminism

in C’s view are abstracted. The first is not really much use

to us, because the act of creating the abstraction identifies

nondeterminism created by A (which is forbidden) with that

created by B (which is not). The second process may well

be nondeterministic since we are allowing information flow

from A to B, which would manifest itself in nondeterminism

visible to B.

4The particular abstraction operator used is not the issue: we have

used lazy abstraction here because it is, as discussed earlier, the most

appropriate in a pure CSP context, but if the ways in which the abstracted

user(s) interact with P included signal/output events, it would again be

right to use mixed abstraction.

The specification that suggested itself to us, therefore,

was that when we abstract away the events in A, the process

has no nondeterminism visible to C:

�
s � traces �
 A � P � � � � c � C �

� � s � � c �!� traces �
 A � P � � � � s � � c � ��� failures �
 A � P � �
This is a straightforward generalisation of the usual defini-

tion of determinism in CSP (we might phrase it ‘‘
 A � P � is

locally deterministic in C’’) and says that after no trace s of

the abstraction might C see either the acceptance or refusal

of an event c in its alphabet.

The natural generalisation of this to an arbitrary (re-

flexive) security policy
�

is that, for each domain C, we

abstract the union of the alphabets of the processes that are

not allowed to influence C, which we can define:

� #�� 	 #�$ � C � ��� � A � A �� C �
and insist that, in just the same sense as above, the process

����
	������� C � � P � is locally deterministic in C.

If this is true (for all the users C) we will say that P obeys the

(lazy) policy
�

. Given a subset S of events of the alphabet of

P that are signals, it is clear how to define a corresponding

notion using mixed abstraction. However, for the rest of the

present paper we will concentrate solely on lazy abstraction

and omit the bracketed lazy from the phrase above.

The following lemmas set out some basic desirable

properties of this definition.

Lemma 1 If P obeys policy
�

and P ��� P, then P � obeys
�

also.

This is because the abstraction operators used are monotone

and if Q ��� Q has nondeterminism visible in a subset X of

its alphabet, so does Q.

Lemma 2 If
�

is transitive, then P obeys
�

if and only if it

does so in the alternative definition we can infer in the way

described in the introduction (in terms of multiple binary

partitions of the alphabet) using concept of lazy indepen-

dence discussed in Section 2.

Lemma 3 If the policies
�

and
� � are based on the same

partition of P’s alphabet into domains, and A � B in
�

implies A � B in
� � , then if P obeys

�
it obeys

� � as well.

Evidently much of the underlying intuition in our def-

inition is similar to that discussed for independence in

Section 2. In particular we must expect to get sometimes

over-pessimistic assessments in the case where the original

process P has some nondeterminism visible to a low-level

user.

An obvious question that arises is: what does our def-

inition mean in terms of trace-sets when applied to a de-

terministic process P? Returning to the three user case,

nondeterminism of
 A � P � can occur precisely when there

are (necessarily different) traces s and s � of P, and c � C,

such that

s � A � s ��� A �����
s
� �

c �!� traces � P � �����
� s � � � c � ��� failures � P �

This easily leads to the following alternative characterisation

of our property.

Theorem 1 Suppose P is deterministic and
�

is a security

policy. Then P obeys
�

if and only if, for all domains C and

s � s � � traces � P � ,
s � � #�� 	 #�$ � C � � s � � � #�� 	 #�$ � C �
� � P � s ����� C � � P � s � ����� C

This new characterisation has obvious similarities with

the purge style discussed earlier. As in the purge-based

trace definition in Section 2, we are stating that the choices

C is offered by P are independent of any events that have

occurred in the part of the alphabet that is not meant to

pass information to C. Unlike the earlier definition, we

are not demanding that the ‘purged trace’ s � � #�� 	 #�$ � C �
is a trace of P. This is, of course, closely related to the

discussion at the beginning of Section 3 where we showed

that a simple definition of purge would not, in the case of

an intransitive policy, produce a trace. What has happened

is that the intuition of determinism has led us back to

this simple purge function and produce ways of specifying

noninterference that do not rely on purge � s � being a trace.

For the simple reason that the equivalence relation on

traces induced by ipurge is (often strictly) finer than than

produced by s � � #�� 	 #�$ � C � , the above theorem allows us

to deduce the following result.

Theorem 2 Suppose P is deterministic and
�

is a security

policy. Then if P obeys
�

in our new sense, it satisfies the

ipurge definition of noninterference with respect to
�

.

(The assumption of P being deterministic is not in fact

necessary here.) In other words, our new definition is less

tolerant than the old one. As we shall soon see, sometimes

it is strictly less tolerant.

It is interesting to consider how the examples discussed

in Section 3 behave under this new definition. Let us

first consider the case of the downgrader with just two

users Hugh and Lois, and again we start by considering

the situation where there are three domains for the security

policy, the two users plus the downgrader, and the events

copy and dgread are removed from the definition. The result

is the opposite of last time: instead of a situation where leaky

version of the system satisfies the property, we now find

that even the apparently reasonable implementation given

at the start of Section 3 does not. For we have the two traces

write � � hugh � f � � �

downgrade � f � lo
and

write � � hugh � f � � �
downgrade � f � lo

which are the same once the high-level actions

(� #�� 	 #�$ � Lois �) are deleted, but after which Lois obvi-

ously gets different events offered by the system when she

attempts to read f . What has happened is that the downgrad-

ing action does not contain enough information to explain

the value that Lois can now see: we actually seem to need

some of Hugh’s history of interaction (as retained by ipurge)

to explain this. But as we saw in the last section, this can

allow the passing of far too much information, so what is

the solution?

The most satisfactory answer we have found comes by

looking more carefully at the definition of the downgrader.

As presently defined, the agent controlling the downgrade

actions can perform them without having seen what he or

she is downgrading, and even if we assume that the file

has always been read first via dgread, there is nothing in

our definition to stop Hugh from writing a secret into the

file between these two actions. From the point of view of

responsibility and attribution, we argue that the definition

of the downgrader would be greatly improved by adding a

further field to the downgrade channel, namely the contents

of the file at the point of downgrading. By doing so we

would have created a ‘‘log’’ which identifies precisely what

information has been downgraded. And by doing so we

immediately remove the above problem, since the pair of

traces above now become ones which are still different after

Hugh’s actions are removed. We have created a system in

which it makes sense to claim that it is only the actions of

the downgrader that affect Lois, not some actions of Hugh

predicated upon intermediate actions of the downgrader. We

believe that being forced to consider the tighter definition

of noninterference produced a clearer and better description

of the downgrader.

If there are more than two security levels (or, more

precisely, more than one level to which it is possible

to downgrade a file), it is still necessary to divide the

downgrade events into multiple domains This is because we

need to be able to determine from the security policy alone

what users are to be influenced by a given
 �#�$ � " �� � � f � c � v

(noting the extra field v); unless c is the lowest classification

this will not be them all. There is, however, no need to divide

either the user or downgrader domains by filename as well

(as we experimented with earlier). The security domains for

our downgrader are then two for each level c: Uc containing

all the events of the users with that classification, and Dc

containing all event of the form
 �#�$ � " �� � � f � c � v for the

given c. The security policy is that Uc
� Ud if and only if

c � d, Uc
� Dd for all c and d, and Dd

� Uc if and only

if d � c. The modified definition of the downgrader obeys

this policy, and if we introduced any of the potential errors

into it discussed earlier that contain security flaws then the

result would not obey it.

There is no problem in incorporating the copy events

into this scheme, as they no longer cross the borderlines of

domains. The dgread channel, if we wish to include it in

the security policy, should be handled as before: putting

it into a separate top domain which is influenced by all

others but influences none other than itself. It is arguably

better however, for a channel like this along which we

are happy for any information to flow and which has a

peripheral role in the analysis anyway, simply to abstract it

away before we form the security policy. If, by doing so,

nondeterminism were introduced at lower domains (which

does not occur with the present example), it would provide

the same warning of potential information flow resulting

from use of such a channel that including it in the policy

generates.

With our other example, the GUARD process, it would

normally be appropriate to make the outputs of this process

play the intermediary (downgrader-like) role in the security

policy, probably abstracting away its inputs if these are not

overall inputs to the system. Our new definition of noninter-

ference then says unequivocally that the information flow

to the downstream side must be accountable for purely in

terms of what GUARD chooses to output. Again we regard

this as more satisfactory than the definition that allows any-

thing which has occurred prior to a GUARD output to be

transmitted in a way that bypasses this component process.

5 Automation

The key to making the determinism characterisation of

(transitive) noninterference practically useful has been the

existence of efficient decision procedures for the determin-

ism of a finite-state CSP process. Aside from normalising

(see, for example, [15]) the complete process value, and

then inspecting the result, which in many cases is likely to

be relatively slow, we are aware of two different algorithms

for this. The more elegant (also described in [15]) exploits

the fact that the deterministic processes are the maximal

elements of the failures/divergences model of CSP under

the refinement order. The algorithm involves extracting an

arbitrary deterministic refinement P � of our target process

P: P is then deterministic if and only if P refines P � . The

alternative method, developed by Lazic [10] for the purpose

of extending ideas of data independence to determinism

checking, involves running two copies of P in parallel with

each other in such a way that the first is always allowed

to choose any communication it likes, and only then is the

second offered it (and only it). The process is determinis-

tic just when this second offer is never refused, and this is

something that can easily be checked by a refinement check.

The unconventional parallel composition used in the last

of these methods is achieved by renaming each event a of

one (say the second) copy of P to a distinct ‘‘shadow’’ event

a � (which is different both from all events of P and all other

b �), and linking the two by the process

TEST � � a � A
�

a � � TEST

where A is the alphabet of P. Because we are combining

two copies of P in parallel, this method is, in the worst case,

quadratic in the state-space size of P, though it is unlikely

to be this bad in practice. In the type of example we are

considering, where P is produced by applying abstraction

operators to a (usually) deterministic process, there are

often substantial advantages to be had in applying state-

compression operators to P prior to this type of check.5

For the generalised concept of noninterference intro-

duced in this paper we need to be able to check for local

determinism in a set of events C, so it is natural to ask how

the above methods extend to it. The one which involves

checking over the normal form is little different: the main

effort is in the normalisation (unchanged from the previous

case), but the check that has to be done on each normal form

node is slightly different. We have to discover if any node

has both c as an initial event and � c � as a refusal set for

any c � C. The method based on the maximality of deter-

ministic processes does not work, as locally deterministic

processes are not necessarily maximal, and we cannot see a

reasonable fix6

This leaves the method in which P is run in parallel with

itself. This is easy to amend: all we have to do is change

the renaming and TEST process a little. Shadow events are

only created for events in C, so the second copy P � of P

has all its other events left unchanged by the renaming. The

TEST process allows P and P � to synchronise as they please

on these other events, except that after P has performed an

event in C it insists that P � does its shadow and nothing

5Compressing an abstracted process can often itself be more efficient

by abstracting all events as early as possible as the process is built up and

using the compression operators hierarchically.
6In fact, the formulation of lazy abstraction given earlier also causes

problems with this algorithm in checking ordinary determinism thanks to

the way it handles divergence. In that case, however, there is a convenient

fix, but not one which is valid for local determinism. That is to use a

specific implementation of
�

A

�
P � , namely the one in which H behaves as

STOP, as a reference.

else: if B are the events of P less the set C,

TEST � � x � B
�

TEST� � c � C
�

c � � TEST

The resultant combination (in which all three processes must

synchronise on events in B, P and TEST on C, and TEST

and P � on C �) can deadlock immediately after an event in C

if and only if P is not locally deterministic in C.

We conclude that the generalised noninterference con-

dition is decidable in the same spirit as the original

determinism-based one, but what was, in some ways, the

most attractive option is not now available to us. We

have performed a number of experiments with the parallel

method described above for the type of example process dis-

cussed in this paper, but it is obviously desirable that larger

case-studies, where the results are less easily predictable,

are carried out.

It is also possible to decide the ipurge definition of

noninterference in the context of CSP and FDR, by carefully

combining a renamed version of the target process with a

monitor process whose role, essentially, is to decide which

events need to be abstracted. This, in fact, uses only

ordinary, as opposed to local, determinism checking, but

is complex to formulate for security policies with many

failures of transitivity.

6 Conclusions

It was a great surprise to us to discover how the previ-

ously published definitions of intransitive noninterference

behaved when we considered them in the context of our

examples. We assume that these definitions were driven

somewhat by the desire to have traditional-looking defini-

tions based on the purge function and on unwinding, but

our conclusion is that they are worryingly liberal in the

sense that they fail to catch potential security leaks. (The

ipurge definition does, as several of the references cited at

the start of Section 3 demonstrate, yield useful definitions

of unwinding.)

The advantage of our new definition, which as can be

seen from the trace reformulation given in Theorem 1 is in

some way closer to those of ordinary noninterference, is that

it clearly establishes the principle that the only permitted

influences on the low-level process are by the intermediary

(even though the latter may well have been influenced in

what it said by the high-level process). We do not have to

find some way of formulating which high-level information

the intermediary intended through or make the bold as-

sumption (seemingly made by the various authors who have

used ipurge) that it was all to be allowed. As we saw, the

new definition forced us to create what was really a better

downgrading system in which the blame for any (manage-

rially) undesired information flow is directly attributable to

something the downgrader does. We expect that further

case study work will help to determine whether the rigours

of satisfying our stronger formulation of noninterference are

generally helpful or turn out to be unreasonably onerous.

Faced with a choice of two conditions, one of which is

demonstrably too weak and the other arguably too strong, it

is surely better to aim to satisfy the latter rather than being

happy with the former.

As stated earlier, in this work we have concentrated

on the deterministic P case of systems described in CSP.

Theorem 1 easily points to how analogous definitions could

be formulated in state-machine models or other paradigms

with similar notations of traces, but it is not quite so easy to

see how the decision procedures we have developed for CSP

would carry over to the usual frameworks these use. We

imagine that work currently under way to help understand

ordinary noninterference in the context of nondeterministic

CSP should extend to the intransitive context we have set

out. However, as discussed earlier, the right answer for how

to handle this issue is still uncertain.

The CSP characterisations given in [15] of (transitive)

noninterference and fault tolerance are closely related to

each other. This is because a system is obviously fault

tolerant if the occurrence of faults (which we can code as

being triggered by specific events) has no effect on what

the user sees. The definition, in fact, is that the system with

fault events lazily abstracted refines the one in which the

faults are prevented (by parallel composition with STOP

synchronising on the fault events) from occurring. While

this definition is intuitively appealing, its use is limited to

circumstances under which the system is sufficiently robust

that the user never sees any negative effect from faults. One

can imagine wanting to analyse systems in which faults can

affect the user’s view, but hopefully only in a controlled

way. We believe that the same ideas used here to reason

about intransitive noninterference may provide a means by

which such systems can be analysed. The fault actions are

again analogous to the high-level actions of MLS, and the

user’s view is again analogous to the low-level ones. But

this time we might have a fault recovery system or operating

system playing a downgrader-like role, and want to show

that the only effects the user can see resulting from faults

are those s/he is warned about by this intermediary. This

will be a topic for future research.

Acknowledgements

We would like to thank Sylvan Pinsky and Peter Ryan for

advice and discussions about intransitive noninterference.

The work reported in this paper was funded by DERA

Malvern and the US Office of Naval Research.

References

[1] R. Focardi, Comparing two information flow security

policies, Proceedings of CSFW IX, IEEE Computer

Society Press, 1996.

[2] R. Focardi and R. Gorrieri, A classification of security

policies for process algebras, Journal of Computer

Security, 3, 1, pp5-33, 1994.

[3] Formal Systems (Europe) Ltd. FDR2 manual, 1998.

http://www.formal.demon.co.uk/fdr2manual/.

[4] R. Forster, Non-interference properties for nonde-

terministic processes, Dissertation for transfer to

D.Phil status, Oxford University Computing Labo-

ratory 1997.

[5] J.A. Goguen and J. Meseguer. Security policies and

security models, in Proceedings of the 1982 IEEE

Symposium on Security and Privacy, pp 1 1-20. IEEE

Computer Society Press, 1982.

[6] J.A. Goguen and J. Meseguer. Inference control and

unwinding, in Proceedings of the 1984 IEEE Sym-

posium on Security and Privacy, pp 75-86. IEEE

Computer Society Press, 1984.

[7] J. Graham-Cumming, The formal development of se-

cure systems, Oxford University D.Phil Thesis, 1992.

[8] J.Haigh and W. Young, Extending the non-inference

model of MLS for SAT, in Proceedings of the 1986

IEEE Symposium on Security and Privacy, pp 232-

239, IEEE Computer Society Press, 1986.

[9] J.L. Jacob, Specifying Security Properties, in Devel-

opments in Concurrency and Communication, C.A.R.

Hoare (ed.) Addison-Wesley 1990.

[10] R.S. Lazic and A.W. Roscoe. Verifying determinism

of concurrent systems which use unbounded arrays.

Technical report, Oxford University Computing Lab-

oratory, April 1998. Full version of [11].

[11] R.S. Lazic and A.W. Roscoe. Verifying Determinism

of Data Independent Systems with Labellings, Arrays

and Constants. In Proceedings of Infinity’98, 1998. To

appear; full version issued as [10].

[12] J. MacLean Proving noninterference and functional

correctness using traces, Journal of Computer Security

1: 37-57 (1992).

[13] S. Pinsky, Absorbing covers and intransitive nonin-

terference, Proceedings of 1995 IEEE Symposium on

Security and Privacy.

[14] A.W. Roscoe, CSP and determinism in security mod-

elling, Proceedings of 1995 IEEE Symposium on

Security and Privacy.

[15] A.W. Roscoe. The Theory and Practice of Concur-

rency. Prentice Hall, 1998. ISBN 0-13-6774409-5,

pp. xv+565.

[16] A.W. Roscoe, J.C.P. Woodcock, and L. Wulf. Non-

interference through determinism. Journal of Com-

puter Security, 4(1), 1996. Revised from Proceedings

of the European Symposium on Research in Computer

Security (ESORICS) 1994, LNCS 875.

[17] A.W. Roscoe and L. Wulf, Composing and decompos-

ing processes under security properties, Proceedings

of CSFW VIII, IEEE Computer Society Press, 1995.

[18] John Rushby. Noninterference, transitivity, and

channel-control security policies. Technical Report

csl-92-2, SRI, 1992.

[19] P.Y.A. Ryan, A CSP formulation of non-interference,

Cipher, pp 19-27. IEEE Computer Society Press, 1991.

[20] Lars Wulf. Interaction and Security in Distributed

Computing. DPhil, Wolfson College, University of

Oxford, Hilary 1997.

[21] W. Young and W. Bevier, A state-based approach

to non-interference, Proceedings of CSFW VII, IEEE

Computer Society Press, 1994.

