CHAPTER

Substitutes for C Constructs

THE Java programming language shares many similarities with the C program-
ming language, but several C constructs have been omitted. In most cases, it’s obvi-
ous why a C construct was omitted and how to make do without it. This chapter
suggests replacements for several omitted C constructs whose replacements are not
so obvious.

The common thread that connects the items in this chapter is that all of the
omitted constructs are data-oriented rather than object-oriented. The Java pro-
gramming language provides a powerful type system, and the suggested replace-
ments take full advantage of that type system to deliver a higher quality
abstraction than the C constructs they replace.

Even if you choose to skip this chapter, it’s probably worth reading Item 21,
which discusses the typesafe enum pattern, a replacement for C’s enum construct.
This pattern is not widely known at the time of this writing, and it has several advan-
tages over the methods currently in common use.

Item 19: Replace structures with classes

The C struct construct was omitted from the Java programming language because
a class does everything a structure does and more. A structure merely groups multi-
ple data fields into a single object; a class associates operations with the resulting
object and allows the data fields to be hidden from users of the object. In other
words, a class can encapsulate its data into an object that is accessed solely by its
methods, allowing the implementor the freedom to change the representation over
time (Item 12).

Upon first exposure to the Java programming language, some C programmers
believe that classes are too heavyweight to replace structures under some circum-

97



98

CHAPTER 5 SUBSTITUTES FOR C CONSTRUCTS

stances, but this is not the case. Degenerate classes consisting solely of data fields
are loosely equivalent to C structures:

// Degenerate classes like this should not be public!
class Point {

public float x;

public float y;

Because such classes are accessed by their data fields, they do not offer the
benefits of encapsulation. You cannot change the representation of such a class
without changing its API, you cannot enforce any invariants, and you cannot take
any auxiliary action when a field is modified. Hard-line object-oriented program-
mers feel that such classes are anathema and should always be replaced by classes
with private fields and public accessor methods:

// Encapsulated structure class
class Point {

private float x;

private float y;

public Point(float x, float y) {
this.x = x;
this.y = vy;

}

public float getX() { return x; }
public float getY() { return y; }

public void setX(float x) { this.x = x; }
public void setY(float y) { this.y y; }

Certainly, the hard-liners are correct when it comes to public classes: If a class
is accessible outside the confines of its package, the prudent programmer will pro-
vide accessor methods to preserve the flexibility to change the class’s internal rep-
resentation. If a public class were to expose its data fields, all hope of changing
the representation would be lost, as client code for public classes can be distrib-
uted all over the known universe.

If, however, a class is package-private, or it is a private nested class, there is
nothing inherently wrong with directly exposing its data fields—assuming they
really do describe the abstraction provided by the class. This approach generates
less visual clutter than the access method approach, both in the class definition



ITEM 19: REPLACE STRUCTURES WITH CLASSES

and in the client code that uses the class. While the client code is tied to the inter-
nal representation of the class, this code is restricted to the package that contains
the class. In the unlikely event that a change in representation becomes desirable,
it is possible to effect the change without touching any code outside the package.
In the case of a private nested class, the scope of the change is further restricted to
the enclosing class.

Several classes in the Java platform libraries violate the advice that public
classes should not expose fields directly. Prominent examples include the Point
and Dimension classes in the java.awt package. Rather than examples to be emu-
lated, these classes should be regarded as cautionary tales. As described in Item
37, the decision to expose the internals of the Dimension class resulted in a seri-
ous performance problem that could not be solved without affecting clients.

99



100

CHAPTER 5 SUBSTITUTES FOR C CONSTRUCTS

Item 20: Replace unions with class hierarchies

The C union construct is most frequently used to define structures capable of hold-
ing more than one type of data. Such a structure typically contains at least two
fields: a union and a tag. The tag is just an ordinary field used to indicate which of
the possible types is held by the union. The tag is generally of some enum type. A
structure containing a union and a tag is sometimes called a discriminated union.

In the C example below, the shape_t type is a discriminated union that can be
used to represent either a rectangle or a circle. The area function takes a pointer to
a shape_t structure and returns its area, or -1.0, if the structure is invalid:

/* Discriminated union */
#include "math.h"
typedef enum {RECTANGLE, CIRCLE} shapeType_t;

typedef struct {
doubTle length;
double width;

} rectangleDimensions_t;

typedef struct {
double radius;
} circleDimensions_t;

typedef struct {
shapeType_t tag;

union {
rectangleDimensions_t rectangle;
circleDimensions_t circle;
} dimensions;
} shape_t;

doubTle area(shape_t *shape) {
switch(shape->tag) {

case RECTANGLE:
doubTle Tength shape->dimensions.rectangle.length;
doubTe width shape->dimensions.rectangle.width;
return length * width;

}

case CIRCLE: {
double r = shape->dimensions.circle.radius;
return M_PI * (r*r);

}

default: return -1.0; /* Invalid tag */

-~



ITEM 20: REPLACE UNIONS WITH CLASS HIERARCHIES

The designers of the Java programming language chose to omit the union
construct because there is a much better mechanism for defining a single data type
capable of representing objects of various types: subtyping. A discriminated union
is really just a pallid imitation of a class hierarchy.

To transform a discriminated union into a class hierarchy, define an abstract
class containing an abstract method for each operation whose behavior depends
on the value of the tag. In the earlier example, there is only one such operation,
area. This abstract class is the root of the class hierarchy. If there are any opera-
tions whose behavior does not depend on the value of the tag, turn these opera-
tions into concrete methods in the root class. Similarly, if there are any data fields
in the discriminated union besides the tag and the union, these fields represent
data common to all types and should be added to the root class. There are no such
type-independent operations or data fields in the example.

Next, define a concrete subclass of the root class for each type that can be rep-
resented by the discriminated union. In the earlier example, the types are circle
and rectangle. Include in each subclass the data fields particular to its type. In the
example, radius is particular to circle, and length and width are particular to rect-
angle. Also include in each subclass the appropriate implementation of each
abstract method in the root class. Here is the class hierarchy corresponding to the
discriminated union example:

abstract class Shape {
abstract double area();

}

class Circle extends Shape {
final double radius;

Circle(double radius) { this.radius = radius; }

double area() { return Math.PI * radius*radius; }

}

class Rectangle extends Shape {
final double length;
final double width;

Rectangle(double Tength, double width) {
this.Tength = length;
this.width = width;

}

double area() { return Tength * width; }

101



102

CHAPTER 5 SUBSTITUTES FOR C CONSTRUCTS

A class hierarchy has numerous advantages over a discriminated union. Chief
among these is that the class hierarchy provides type safety. In the example, every
Shape instance is either a valid Circle or a valid Rectangle. It is a simple matter
to generate a shape_t structure that is complete garbage, as the association
between the tag and the union is not enforced by the language. If the tag indicates
that the shape_t represents a rectangle but the union has been set for a circle, all
bets are off. Even if a discriminated union has been initialized properly, it is possi-
ble to pass it to a function that is inappropriate for its tag value.

A second advantage of the class hierarchy is that code is simple and clear. The
discriminated union is cluttered with boilerplate: declaring the enum type, declar-
ing the tag field, switching on the tag field, dealing with unexpected tag values,
and the like. The discriminated union code is made even less readable by the fact
that the operations for the various types are intermingled rather than segregated by
type.

A third advantage of the class hierarchy is that it is easily extensible, even by
multiple parties working independently. To extend a class hierarchy, simply add a
new subclass. If you forget to override one of the abstract methods in the
superclass, the compiler will tell you in no uncertain terms. To extend a
discriminated union, you need access to the source code. You must add a new
value to the enum type, as well as a new case to the switch statement in each
operation on the discriminated union. Finally, you must recompile. If you forget to
provide a new case for some method, you won’t find out until run time, and then
only if you’re careful to check for unrecognized tag values and generate an
appropriate error message.

A fourth advantage of the class hierarchy is that it can be made to reflect natu-
ral hierarchical relationships among types, to allow for increased flexibility and
better compile-time type checking. Suppose the discriminated union in the origi-
nal example also allowed for squares. The class hierarchy could be made to reflect
the fact a square is a special kind of rectangle (assuming both are immutable):

class Square extends Rectangle {
Square(double side) {
super(side, side);

}

double side() {
return length; // or equivalently, width
}



ITEM 20: REPLACE UNIONS WITH CLASS HIERARCHIES

The class hierarchy in this example is not the only one that could have been
written to replace the discriminated union. The hierarchy embodies several design
decisions worthy of note. The classes in the hierarchy, with the exception of
Square, are accessed by their fields rather than by accessor methods. This was
done for brevity and would be unacceptable if the classes were public (Item 19).
The classes are immutable, which is not always appropriate, but is generally a
good thing (Item 13).

Since the Java programming language does not provide the union construct,
you might think there’s no danger of implementing a discriminated union, but it is
possible to write code with many of the same disadvantages. Whenever you’re
tempted to write a class with an explicit tag field, think about whether the tag
could be eliminated and the class replaced by a class hierarchy.

Another use of C’s union construct, completely unrelated to discriminated
unions, involves looking at the internal representation of a piece of data, intention-
ally violating the type system. This usage is demonstrated by the following C code
fragment, which prints the machine-specific hex representation of a float:

union {
float f;
int bits;
} sleaze;
sleaze.f = 6.699e-41; /% Put data in one field of union... */
printf("%x\n", sleaze.bits); /* ...and read it out the other. */

While it can be useful, especially for system programming, this nonportable
usage has no counterpart in the Java programming language. In fact, it is antitheti-
cal to the spirit of the language, which guarantees type safety and goes to great
lengths to insulate programmers from machine-specific internal representations.

The java.lang package does contain methods to translate floating point num-
bers into bit representations, but these methods are defined in terms of a precisely
specified bit representation to ensure portability. The code fragment that follows,
which is loosely equivalent to the earlier C fragment, is guaranteed to print the
same result, no matter where it’s run:

System.out.printTn(
Integer.toHexString(Float.floatToIntBits(6.699e-41f)));

103



104

CHAPTER 5 SUBSTITUTES FOR C CONSTRUCTS

Item 21: Replace enum constructs with classes

The C enum construct was omitted from the Java programming language. Nomi-
nally, this construct defines an enumerated type: a type whose legal values consist
of a fixed set of constants. Unfortunately, the enum construct doesn’t do a very good
job of defining enumerated types. It just defines a set of named integer constants,
providing nothing in the way of type safety and little in the way of convenience. Not
only is the following legal C:

typedef enum {FUJI, PIPPIN, GRANNY_SMITH} apple_t;
typedef enum {NAVEL, TEMPLE, BLOOD} orange_t;
orange_t myFavorite = PIPPIN; /* Mixing apples and oranges */

but so is this atrocity:

orange_t x = (FUJI - PIPPIN)/TEMPLE; /* Applesauce! */

The enum construct does not establish a name space for the constants it gener-
ates. Therefore the following declaration, which reuses one of the names, conflicts
with the orange_t declaration:

typedef enum {BLOOD, SWEAT, TEARS} fluid_t;

Types defined with the enum construct are brittle. Adding constants to such a
type without recompiling its clients causes unpredictable behavior, unless care is
taken to preserve all of the preexisting constant values. Multiple parties cannot
add constants to such a type independently, as their new enumeration constants are
likely to conflict. The enum construct provides no easy way to translate enumera-
tion constants into printable strings or to enumerate over the constants in a type.

Unfortunately, the most commonly used pattern for enumerated types in the
Java programming language, shown here, shares the shortcomings of the C enum
construct:

// The 1int enum pattern - problematic!!
pubTlic class PlayingCard {
public static final int SUIT_CLUBS
public static final int SUIT_DIAMONDS =
public static final int SUIT_HEARTS
public static final int SUIT_SPADES

|
wN R



ITEM 21: REPLACE ENUM CONSTRUCTS WITH CLASSES

You may encounter a variant of this pattern in which String constants are
used in place of int constants. This variant should never be used. While it does
provide printable strings for its constants, it can lead to performance problems
because it relies on string comparisons. Furthermore, it can lead naive users to
hard-code string constants into client code instead of using the appropriate field
names. If such a hard-coded string constant contains a typographical error, the
error will escape detection at compile time and result in bugs at run time.

Luckily, the Java programming language presents an alternative that avoids all
the shortcomings of the common int and String patterns and provides many
added benefits. It is called the typesafe enum pattern. Unfortunately, it is not yet
widely known. The basic idea is simple: Define a class representing a single ele-
ment of the enumerated type, and don’t provide any public constructors. Instead,
provide public static final fields, one for each constant in the enumerated type.
Here’s how the pattern looks in its simplest form:

// The typesafe enum pattern
public class Suit {
private final String name;

private Suit(String name) { this.name = name; }
public String toString() { return name; }
public static final Suit CLUBS
public static final Suit DIAMONDS

public static final Suit HEARTS
public static final Suit SPADES

new Suit("clubs");
new Suit("diamonds");
new Suit("hearts™);
new Suit("spades");

Because there is no way for clients to create objects of the class or to extend it,
there will never be any objects of the type besides those exported via the public
static final fields. Even though the class is not declared final, there is no way to
extend it: Subclass constructors must invoke a superclass constructor, and no such
constructor is accessible.

As its name implies, the typesafe enum pattern provides compile-time type
safety. If you declare a method with a parameter of type Suit, you are guaranteed
that any non-null object reference passed in represents one of the four valid suits.
Any attempt to pass an incorrectly typed object will be caught at compile time, as
will any attempt to assign an expression of one enumerated type to a variable of
another. Multiple typesafe enum classes with identically named enumeration con-
stants coexist peacefully because each class has its own name space.

105



106

CHAPTER 5 SUBSTITUTES FOR C CONSTRUCTS

Constants may be added to a typesafe enum class without recompiling its cli-
ents because the public static object reference fields containing the enumeration
constants provide a layer of insulation between the client and the enum class. The
constants themselves are never compiled into clients as they are in the more com-
mon int pattern and its String variant.

Because typesafe enums are full-fledged classes, you can override the
toString method as shown earlier, allowing values to be translated into printable
strings. You can, if you desire, go one step further and internationalize typesafe
enums by standard means. Note that string names are used only by the toString
method; they are not used for equality comparisons, as the equals implementa-
tion, which is inherited from Object, performs a reference identity comparison.

More generally, you can augment a typesafe enum class with any method that
seems appropriate. Our Suit class, for example, might benefit from the addition
of a method that returns the color of the suit or one that returns an image repre-
senting the suit. A class can start life as a simple typesafe enum and evolve over
time into a full-featured abstraction.

Because arbitrary methods can be added to typesafe enum classes, they can be
made to implement any interface. For example, suppose that you want Suit to
implement Comparable so clients can sort bridge hands by suit. Here’s a slight
variant on the original pattern that accomplishes this feat. A static variable, next-
Ordinal, is used to assign an ordinal number to each instance as it is created.
These ordinals are used by the compareTo method to order instances:

// Ordinal-based typesafe enum
pubTlic class Suit implements Comparable {
private final String name;

// Ordinal of next suit to be created
private static int nextOrdinal = 0;

// Assign an ordinal to this suit
private final int ordinal = nextOrdinal++;

private Suit(String name) { this.name = name; }
public String toString() { return name; }
public int compareTo(Object o) {

return ordinal - ((Suit)o).ordinal;

}



ITEM 21: REPLACE ENUM CONSTRUCTS WITH CLASSES

public static final Suit CLUBS
public static final Suit DIAMONDS
public static final Suit HEARTS
public static final Suit SPADES

new Suit("clubs");
new Suit("diamonds");
new Suit("hearts");
new Suit("spades");

Because typesafe enum constants are objects, you can put them into collec-
tions. For example, suppose you want the Sui t class to export an immutable list of
the suits in standard order. Merely add these two field declarations to the class:

private static final Suit[] PRIVATE_VALUES =
{ CLUBS, DIAMONDS, HEARTS, SPADES };

public static final List VALUES =
Collections.unmodifiablelList(Arrays.asList(PRIVATE_VALUES));

Unlike the simplest form of the typesafe enum pattern, classes of the ordinal-
based form above can be made serializable (Chapter 10) with a little care. It is not
sufficient merely to add implements Serializable to the class declaration. You
must also provide a readResolve method (Item 57):

private Object readResolve() throws ObjectStreamException {
return PRIVATE_VALUES[ordinal]; // Canonicalize
}

This method, which is invoked automatically by the serialization system, pre-
vents duplicate constants from coexisting as a result of deserialization. This main-
tains the guarantee that only a single object represents each enum constant,
avoiding the need to override Object.equals. Without this guarantee,
Object.equals would report a false negative when presented with two equal but
distinct enumeration constants. Note that the readResolve method refers to the
PRIVATE_VALUES array, so you must declare this array even if you choose not to
export VALUES. Note also that the name field is not used by the readResolve
method, so it can and should be made transient.

The resulting class is somewhat brittle; constructors for any new values must
appear after those of all existing values, to ensure that previously serialized
instances do not change their value when they’re deserialized. This is so because
the serialized form (Item 55) of an enumeration constant consists solely of its
ordinal. If the enumeration constant pertaining to an ordinal changes, a serialized
constant with that ordinal will take on the new value when it is deserialized.

There may be one or more pieces of behavior associated with each constant
that are used only from within the package containing the typesafe enum class.

107



108

CHAPTER 5 SUBSTITUTES FOR C CONSTRUCTS

Such behaviors are best implemented as package-private methods on the class.
Each enum constant then carries with it a hidden collection of behaviors that
allows the package containing the enumerated type to react appropriately when
presented with the constant.

If a typesafe enum class has methods whose behavior varies significantly from
one class constant to another, you should use a separate private class or anony-
mous inner class for each constant. This allows each constant to have its own
implementation of each such method and automatically invokes the correct imple-
mentation. The alternative is to structure each such method as a multiway branch
that behaves differently depending on the constant on which it’s invoked. This
alternative is ugly, error prone, and likely to provide performance that is inferior to
that of the virtual machine’s automatic method dispatching.

The two techniques described in the previous paragraphs are illustrated in the
typesafe enum class that follows. The class, Operation, represents an operation
performed by a basic four-function calculator. Outside of the package in which the
class is defined, all you can do with an Operation constant is to invoke the
Object methods (toString, hashCode, equals, and so forth). Inside the package,
however, you can perform the arithmetic operation represented by the constant.
Presumably, the package would export some higher-level calculator object that
exported one or more methods that took an Operation constant as a parameter.
Note that Operation itself is an abstract class, containing a single package-private
abstract method, eval, that performs the appropriate arithmetic operation. An
anonymous inner class is defined for each constant so that each constant can
define its own version of the eval method:

// Typesafe enum with behaviors attached to constants
pubTlic abstract class Operation {
private final String name;

Operation(String name) { this.name = name; }
public String toString() { return this.name; }

// Perform arithmetic operation represented by this constant
abstract double eval(double x, double y);

public static final Operation PLUS = new Operation("+") {
doubTle eval(double x, double y) { return x + y; }

1

public static final Operation MINUS = new Operation("-") {
doubTle eval(double x, double y) { return x - y; }

1



ITEM 21: REPLACE ENUM CONSTRUCTS WITH CLASSES

public static final Operation TIMES = new Operation("*") {
doubTle eval(double x, double y) { return x * y; }
1
public static final Operation DIVIDED_BY =
new Operation("/") {
doubTle eval(double x, double y) { return x / y; }

};

Typesafe enums are, generally speaking, comparable in performance to int
enumeration constants. Two distinct instances of a typesafe enum class can never
represent the same value, so reference identity comparisons, which are fast, are
used to check for logical equality. Clients of a typesafe enum class can use the ==
operator instead of the equals method; the results are guaranteed to be identical,
and the == operator may be even faster.

If a typesafe enum class is generally useful, it should be a top-level class; if its
use is tied to a specific top-level class, it should be a static member class of that
top-level class (Item 18). For example, the java.math.BigDecimal class contains
a collection of int enumeration constants representing rounding modes for deci-
mal fractions. These rounding modes provide a useful abstraction that is not fun-
damentally tied to the BigDecimal class; they would been better implemented as a
freestanding java.math.RoundingMode class. This would have encouraged any
programmer who needed rounding modes to reuse those rounding modes, leading
to increased consistency across APIs.

The basic typesafe enum pattern, as exemplified by both Suit implementa-
tions shown earlier, is fixed: It is impossible for users to add new elements to the
enumerated type, as its class has no user-accessible constructors. This makes the
class effectively final, whether or not it is declared with the final access modifier.
This is normally what you want, but occasionally you may want to make a type-
safe enum class extensible. This might be the case, for example, if you used a
typesafe enum to represent image encoding formats and you wanted third parties
to be able to add support for new formats.

To make a typesafe enum extensible, merely provide a protected constructor.
Others can then extend the class and add new constants to their subclasses. You
needn’t worry about enumeration constant conflicts as you would if you were
using the int enum pattern. The extensible variant of the typesafe enum pattern
takes advantage of the package namespace to create a “magically administered”
namespace for the extensible enumeration. Multiple organizations can extend the
enumeration without knowledge of one another, and their extensions will never
conflict.

109



110

CHAPTER 5 SUBSTITUTES FOR C CONSTRUCTS

Merely adding an element to an extensible enumerated type does not ensure
that the new element is fully supported: Methods that take an element of the enu-
merated type must contend with the possibility of being passed an element
unknown to the programmer. Multiway branches on fixed enumerated types are
questionable; on extensible enumerated types they’re lethal, as they won’t magi-
cally grow a branch each time a programmer extends the type.

One way to cope with this problem is to outfit the typesafe enum class with all
of the methods necessary to describe the behavior of a constant of the class. Meth-
ods that are not useful to clients of the class should be protected to hide them from
clients while allowing subclasses to override them. If such a method has no rea-
sonable default implementation, it should be abstract as well as protected.

It is a good idea for extensible typesafe enum classes to override the equals
and hashCode methods with final methods that invoke the Object methods. This
ensures that no subclass accidentally overrides these methods, maintaining the
guarantee that all equal objects of the enumerated type are also identical
(a.equals(b) if and only if a==b):

//0verride-prevention methods
public final boolean equals(Object that) {
return super.equals(that);

}

public final int hashCode() {
return super.hashCode();

}

Note that the extensible variant is not compatible with the comparable variant;
if you tried to combine them, the ordering among the elements of the subclasses
would be a function of the order in which the subclasses were initialized, which
could vary from program to program and run to run.

The extensible variant of the typesafe enum pattern is compatible with the
serializable variant, but combining these variants demands some care. Each
subclass must assign its own ordinals and provide its own readResolve method.
In essence, each class is responsible for serializing and deserializing its own



ITEM 21: REPLACE ENUM CONSTRUCTS WITH CLASSES 111

instances. To make this concrete, here is a version of the Operation class that has
been modified to be both extensible and serializable:

// Serializable, extensible typesafe enum

public abstract class Operation implements Serializable {
private final transient String name;
protected Operation(String name) { this.name = name; }

public static Operation PLUS = new Operation("+") {
protected double eval(double x, double y) { return x+y; }

1

public static Operation MINUS = new Operation("-") {
protected double eval(double x, double y) { return x-y; }

1

public static Operation TIMES = new Operation("*") {
protected double eval(double x, double y) { return x*y; }

1

public static Operation DIVIDE = new Operation("/") {
protected double eval(double x, double y) { return x/y; }

1

// Perform arithmetic operation represented by this constant
protected abstract double eval(double x, double y);

public String toString() { return this.name; }
// Prevent subclasses from overriding Object.equals
public final boolean equals(Object that) {
return super.equals(that);
}
public final int hashCode() {
return super.hashCode();

}

// The 4 declarations below are necessary for serialization
private static int nextOrdinal = 0;
private final int ordinal = nextOrdinal++;
private static final Operation[] VALUES =
{ PLUS, MINUS, TIMES, DIVIDE };
Object readResolve() throws ObjectStreamException {
return VALUES[ordinal]l; // Canonicalize
}

Here is a subclass of Operation that adds logarithm and exponential opera-
tions. This subclass could exist outside of the package containing the revised



112 CHAPTER 5 SUBSTITUTES FOR C CONSTRUCTS

Operation class. It could be public, and it could itself be extensible. Multiple inde-
pendently written subclasses can coexist peacefully:

// Subclass of extensible, serializable typesafe enum
abstract class ExtendedOperation extends Operation {
ExtendedOperation(String name) { super(name); }

public static Operation LOG = new ExtendedOperation("log") {
protected double eval(double x, double y) {
return Math.log(y) / Math.log(x);
}
1
public static Operation EXP = new ExtendedOperation("exp") {
protected double eval(double x, double y) {
return Math.pow(x, y);
}
1

// The 4 declarations below are necessary for serialization
private static int nextOrdinal = 0;
private final int ordinal = nextOrdinal++;
private static final Operation[] VALUES = { LOG, EXP };
Object readResolve() throws ObjectStreamException {

return VALUES[ordinal]l; // Canonicalize
}

Note that the readResolve methods in the classes just shown are package-pri-
vate rather than private. This is necessary because the instances of Operation and
ExtendedOperation are, in fact, instances of anonymous subclasses, so private
readResolve methods would have no effect (Item 57).

The typesafe enum pattern has few disadvantages when compared to the int
pattern. Perhaps the only serious disadvantage is that it is more awkward to aggre-
gate typesafe enum constants into sets. With int-based enums, this is traditionally
done by choosing enumeration constant values, each of which is a distinct positive
power of two, and representing a set as the bitwise OR of the relevant constants:

// Bit-flag variant of int enum pattern
pubTlic static final int SUIT_CLUBS =
pubTlic static final int SUIT_DIAMONDS
pubTlic static final int SUIT_HEARTS
public static final int SUIT_SPADES

]
[o IS SN S )

public static final int SUIT_BLACK = SUIT_CLUBS | SUIT_SPADES;



ITEM 21: REPLACE ENUM CONSTRUCTS WITH CLASSES

Representing sets of enumerated type constants in this fashion is concise and
extremely fast. For sets of typesafe enum constants, you can use a general purpose
set implementation from the Collections Framework, but this is neither as concise
nor as fast:

Set bTackSuits = new HashSet();
bTackSuits.add(Suit.CLUBS);
bTackSuits.add(Suit.SPADES) ;

While sets of typesafe enum constants probably cannot be made as concise or
as fast as sets of int enum constants, it is possible to reduce the disparity by pro-
viding a special-purpose Set implementation that accepts only elements of one
type and represents the set internally as a bit vector. Such a set is best imple-
mented in the same package as its element type to allow access, via a package-pri-
vate field or method, to a bit value internally associated with each typesafe enum
constant. It makes sense to provide public constructors that take short sequences
of elements as parameters so that idioms like this are possible:

hand.discard(new SuitSet(Suit.CLUBS, Suit.SPADES));

A minor disadvantage of typesafe enums, when compared with int enums, is
that typesafe enums can’t be used in switch statements because they aren’t inte-
gral constants. Instead, you use an if statement, like this:

if (suit == Suit.CLUBS) {

} else if (suit Suit.DIAMONDS) {

} else if (suit Suit.HEARTS) {

} else if (suit Suit.SPADES) {

} else {
throw new NulTPointerException("Null Suit"); // suit == null
}

The 1if statement may not perform quite as well as the switch statement, but
the difference is unlikely to be very significant. Furthermore, the need for
multiway branches on typesafe enum constants should be rare because they’re
amenable to automatic method dispatching by the JVM, as in the Operator
example.

113



114

CHAPTER 5 SUBSTITUTES FOR C CONSTRUCTS

Another minor performance disadvantage of typesafe enums is that there is a
space and time cost to load enum type classes and construct the constant objects.
Except on resource-constrained devices like cell phones and toasters, this problem
in unlikely to be noticeable in practice.

In summary, the advantages of typesafe enums over int enums are great, and
none of the disadvantages seem compelling unless an enumerated type is to be
used primarily as a set element or in a severely resource constrained environment.
Thus the typesafe enum pattern should be what comes to mind when circum-
stances call for an enumerated type. APIs that use typesafe enums are far more
programmer friendly than those that use int enums. The only reason that typesafe
enums are not used more heavily in the Java platform APIs is that the typesafe
enum pattern was unknown when many of those APIs were written. Finally, it’s
worth reiterating that the need for enumerated types of any sort should be rela-
tively rare, as a major use of these types has been made obsolete by subclassing
(Item 20).



ITEM 22: REPLACE FUNCTION POINTERS WITH CLASSES AND INTERFACES

Item 22: Replace function pointers with classes and interfaces

C supports function pointers, which allow a program to store and transmit the abil-
ity to invoke a particular function. Function pointers are typically used to allow the
caller of a function to specialize its behavior by passing in a pointer to a second
function, sometimes referred to as a callback. For example, the gsort function in
C’s standard library takes a pointer to a comparator function, which it uses to com-
pare the elements to be sorted. The comparator function takes two parameters, each
of which is a pointer to an element. It returns a negative integer if the element
pointed to by the first parameter is less than the one pointed to by the second, zero if
the two elements are equal, and a positive integer if the element pointed to by the
first parameter is greater than the one pointed to by the second. Different sort orders
can be obtained by passing in different comparator functions. This is an example of
the Strategy pattern [Gamma98, p. 315]; the comparator function represents a strat-
egy for sorting elements.

Function pointers were omitted from the Java programming language because
object references can be used to provide the same functionality. Invoking a
method on an object typically performs some operation on that object. However, it
is possible to define an object whose methods perform operations on other
objects, passed explicitly to the methods. An instance of a class that exports
exactly one such method is effectively a pointer to that method. Such instances are
known as function objects. For example, consider the following class:

class StringlLengthComparator {
public int compare(String sl, String s2) {
return sl.length() - s2.Tlength(Q);
}

This class exports a single method that takes two strings and returns a negative
integer if the first string is shorter than the second, zero if the two strings are of
equal length, and a positive integer if the first string is longer. This method is a
comparator that orders strings based on their length instead of the more typical
lexicographic ordering. A reference to a StringLengthComparator object serves
as a “function pointer” to this comparator, allowing it to be invoked on arbitrary
pairs of strings. In other words, a StringLengthComparator instance is a con-
crete strategy for string comparison.

As is typical for concrete strategy classes, the StringlLengthComparator
class is stateless: It has no fields, hence all instances of the class are functionally

115



116

CHAPTER 5 SUBSTITUTES FOR C CONSTRUCTS

equivalent to one another. Thus it could just as well be a singleton to save on
unnecessary object creation costs (Item 4, Item 2):

class StringlLengthComparator {
private StringlLengthComparator() { }

public static final StringlLengthComparator
INSTANCE = new StringlLengthComparator();

public int compare(String sl, String s2) {
return sl.length() - s2.length();
}

To pass a StringLengthComparator instance to a method, we need an
appropriate type for the parameter. It would do no good to use
StringLengthComparator because clients would be unable to pass any other
comparison strategy. Instead, we need to define a Comparator interface and
modify StringLengthComparator to implement this interface. In other words, we
need to define a strategy interface to go with the concrete strategy class. Here it is:

// Strategy interface
public interface Comparator {

public int compare(Object ol, Object 02);
}

This definition of the Comparator interface happens to come from the
java.util package, but there’s nothing magic about it; you could just as well
have defined it yourself. So that it is applicable to comparators for objects other
than strings, its compare method takes parameters of type Object rather than
String. Therefore, the StringlLengthComparator class shown earlier must be
modified slightly to implement Comparator: The Object parameters must be cast
to String prior to invoking the length method.

Concrete strategy classes are often declared using anonymous classes (Item
18). The following statement sorts an array of strings according to length:

Arrays.sort(stringArray, new Comparator() {
public int compare(Object ol, Object 02) {
String sl = (String)ol;
String s2 = (String)o2;
return sl.length() - s2.length();

b;



ITEM 22: REPLACE FUNCTION POINTERS WITH CLASSES AND INTERFACES

Because the strategy interface serves as a type for all of its concrete strategy
instances, a concrete strategy class needn’t be made public to export a concrete
strategy. Instead, a “host class” can export a public static field (or static factory
method) whose type is the strategy interface, and the concrete strategy class can
be a private nested class of the host. In the example that follows, a static member
class is used in preference to an anonymous class to allow the concrete strategy
class to implement a second interface, Serializable:

// Exporting a concrete strategy
class Host {
// Bulk of class omitted

private static class StrLenCmp
implements Comparator, Serializable {
pubTlic int compare(Object ol, Object 02) {
String sl1 = (String)ol;
String s2 = (String)o2;
return sl.length() - s2.TlengthQ);

}

// Returned comparator 1is serializable
public static final Comparator
STRING_LENGTH_COMPARATOR = new StrLenCmp();

The String class uses this pattern to export a case-independent string com-
parator via its CASE_INSENSITIVE_ORDER field.

To summarize, the primary use of C’s function pointers is to implement the
Strategy pattern. To implement this pattern in the Java programming language,
declare an interface to represent the strategy and a class that implements this inter-
face for each concrete strategy. When a concrete strategy is used only once, its
class is typically declared and instantiated using an anonymous class. When a con-
crete strategy is exported for repeated use, its class is generally a private static
member class, and it is exported via a public static final field whose type is the
strategy interface.

117






	Substitutes for C Constructs
	Item 19: Replace structures with classes
	Item 20: Replace unions with class hierarchies
	Item 21: Replace enum constructs with classes
	Item 22: Replace function pointers with classes and interfaces


