
Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2011 · February 23, 2012 4:05:36 PM

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E

1.3 DIJKSTRA'S TWO-STACK ALGORITHM

click to begin demo

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

value stack operator stack

(1 + ((2 + 3) * (4 * 5)))

2

Dijkstra's two-stack algorithm

(1 + ((2 + 3) * (4 * 5)))

operand operator

infix expression
(fully parenthesized)

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

value stack operator stack

(1 + ((2 + 3) * (4 * 5)))

3

Dijkstra's two-stack algorithm

(1 + ((2 + 3) * (4 * 5)))

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

4

Dijkstra's two-stack algorithm

+ ((2 + 3) * (4 * 5)))1

value stack operator stack

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

5

Dijkstra's two-stack algorithm

+ ((2 + 3) * (4 * 5)))

1

value stack operator stack

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

6

Dijkstra's two-stack algorithm

((2 + 3) * (4 * 5)))

1

value stack operator stack

+

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

7

Dijkstra's two-stack algorithm

((2 + 3) * (4 * 5)))

1

value stack operator stack

+

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

8

Dijkstra's two-stack algorithm

((2 + 3) * (4 * 5)))

1

value stack operator stack

+

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

9

Dijkstra's two-stack algorithm

2 + 3) * (4 * 5)))

1

value stack operator stack

+

(

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

10

Dijkstra's two-stack algorithm

+ 3) * (4 * 5)))

1

value stack operator stack

+

2

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

11

Dijkstra's two-stack algorithm

+ 3) * (4 * 5)))

1

value stack operator stack

+

2

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

12

Dijkstra's two-stack algorithm

2

3) * (4 * 5)))

1

value stack operator stack

+

+

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

13

Dijkstra's two-stack algorithm

2

3) * (4 * 5)))

1

value stack operator stack

+

+

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

14

Dijkstra's two-stack algorithm

2 +

) * (4 * 5)))

1

value stack operator stack

+

3

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

15

Dijkstra's two-stack algorithm

2 +

) * (4 * 5)))

1

value stack operator stack

+

3

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

16

Dijkstra's two-stack algorithm

2 +

3

* (4 * 5)))

1

value stack operator stack

+

)

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

17

Dijkstra's two-stack algorithm

2+3

* (4 * 5)))

1

value stack operator stack

+

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

18

Dijkstra's two-stack algorithm

* (4 * 5)))

1

value stack operator stack

+

2+3 = 5

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

19

Dijkstra's two-stack algorithm

* (4 * 5)))

1

value stack operator stack

+

5

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

20

Dijkstra's two-stack algorithm

(4 * 5)))

1

value stack operator stack

+

5

*

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

21

Dijkstra's two-stack algorithm

(4 * 5)))

1

value stack operator stack

+

5 *

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

22

Dijkstra's two-stack algorithm

*

(4 * 5)))

1

value stack operator stack

+

5

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

23

Dijkstra's two-stack algorithm

*

* 5)))

1

value stack operator stack

+

5

4

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

24

Dijkstra's two-stack algorithm

*

* 5)))

1

value stack operator stack

+

5

4

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

25

Dijkstra's two-stack algorithm

*

4

* 5)))

1

value stack operator stack

+

5

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

26

Dijkstra's two-stack algorithm

*

4 *

5)))

1

value stack operator stack

+

5

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

27

Dijkstra's two-stack algorithm

*

4 *

)))

1

value stack operator stack

+

5

5

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

28

Dijkstra's two-stack algorithm

*

4 *

)))

1

value stack operator stack

+

5

5

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

29

Dijkstra's two-stack algorithm

*

4 *

5

))

1

value stack operator stack

+

5

)

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

30

Dijkstra's two-stack algorithm

*

4*5

))

1

value stack operator stack

+

5

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

31

Dijkstra's two-stack algorithm

*

4*5

))

1

value stack operator stack

+

5

= 20

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

32

Dijkstra's two-stack algorithm

*

))

1

value stack operator stack

+

5

20

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

33

Dijkstra's two-stack algorithm

*

)

1

value stack operator stack

+

5

20

)

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

34

Dijkstra's two-stack algorithm

*

)

1

value stack operator stack

+

520

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

35

Dijkstra's two-stack algorithm

*

)

1

value stack operator stack

+

520 = 100

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

36

Dijkstra's two-stack algorithm

)

1

value stack operator stack

+

100

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

37

Dijkstra's two-stack algorithm

)

1

value stack operator stack

+

100

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

38

Dijkstra's two-stack algorithm

1

value stack operator stack

+100

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

39

Dijkstra's two-stack algorithm

1

value stack operator stack

+100 = 101

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

40

Dijkstra's two-stack algorithm

value stack operator stack

101

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

41

Dijkstra's two-stack algorithm

value stack operator stack

101

Value: push onto the value stack.
Operator: push onto the operator stack.
Left parenthesis: ignore.
Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

(1 + ((2 + 3) * (4 * 5)))

42

Dijkstra's two-stack algorithm

result

101

