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F O U R T H  E D I T I O N

R O B E R T  S E D G E W I C K   K E V I N  W A Y N E

1.3  DIJKSTRA'S TWO-STACK ALGORITHM

click to begin demo



Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

value stack operator stack

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )
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operand operator
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(fully parenthesized)
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Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

8

Dijkstra's two-stack algorithm

( ( 2 + 3 ) * ( 4 * 5 ) ) )

1

value stack operator stack

+



Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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Value:  push onto the value stack.
Operator:  push onto the operator stack.
Left parenthesis:  ignore.
Right parenthesis:  pop operator and two values; push the result of
applying that operator to those values onto the operand stack.
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