6.4 FORD-FULKERSON DEMO

click to begin demo
, Ford-Fulkerson algorithm

Ford-Fulkerson algorithm

Initialization. Start with 0 flow.
initialization

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).
$1^{\text {st }}$ augmenting path

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).
$1^{\text {st }}$ augmenting path

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).
$1^{\text {st }}$ augmenting path

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).
$1^{\text {st }}$ augmenting path

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).
$2^{\text {nd }}$ augmenting path

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).
$2^{\text {nd }}$ augmenting path

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).
$2^{\text {nd }}$ augmenting path

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).
$3^{\text {rd }}$ augmenting path

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).
$3^{\text {rd }}$ augmenting path

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).
$3^{\text {rd }}$ augmenting path

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).
$4^{\text {th }}$ augmenting path

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).
$4^{\text {th }}$ augmenting path

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).
$4^{\text {th }}$ augmenting path

Idea: increase flow along augmenting paths

Termination. All paths from s to t are blocked by either a

- Full forward edge.
- Empty backward edge.
no more augmenting paths

, computing a min cut

Computing a mincut from a maxflow

To compute mincut (A, B) from maxflow f :

- By augmenting path theorem, no augmenting paths with respect to f.
- Compute $A=$ set of vertices connected to s by an undirected path with no full forward or empty backward edges.

Computing a mincut from a maxflow

To compute mincut (A, B) from maxflow f :

- By augmenting path theorem, no augmenting paths with respect to f.
- Compute $A=$ set of vertices connected to s by an undirected path with no full forward or empty backward edges.

Computing a mincut from a maxflow

To compute mincut (A, B) from maxflow f :

- By augmenting path theorem, no augmenting paths with respect to f.
- Compute $A=$ set of vertices connected to s by an undirected path with no full forward or empty backward edges.

Computing a mincut from a maxflow

To compute mincut (A, B) from maxflow f :

- By augmenting path theorem, no augmenting paths with respect to f.
- Compute $A=$ set of vertices connected to s by an undirected path with no full forward or empty backward edges.

Computing a mincut from a maxflow

To compute mincut (A, B) from maxflow f :

- By augmenting path theorem, no augmenting paths with respect to f.
- Compute $A=$ set of vertices connected to s by an undirected path with no full forward or empty backward edges.

Computing a mincut from a maxflow

To compute mincut (A, B) from maxflow f :

- By augmenting path theorem, no augmenting paths with respect to f.
- Compute $A=$ set of vertices connected to s by an undirected path with no full forward or empty backward edges.

Computing a mincut from a maxflow

To compute mincut (A, B) from maxflow f :

- By augmenting path theorem, no augmenting paths with respect to f.
- Compute $A=$ set of vertices connected to s by an undirected path with no full forward or empty backward edges.

Computing a mincut from a maxflow

To compute mincut (A, B) from maxflow f :

- By augmenting path theorem, no augmenting paths with respect to f.
- Compute $A=$ set of vertices connected to s by an undirected path with no full forward or empty backward edges.

Computing a mincut from a maxflow

To compute mincut (A, B) from maxflow f :

- By augmenting path theorem, no augmenting paths with respect to f.
- Compute $A=$ set of vertices connected to s by an undirected path with no full forward or empty backward edges.

