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Algorithms
F O U R T H  E D I T I O N

R O B E R T  S E D G E W I C K   K E V I N  W A Y N E

KD TREE DEMO

‣ insertion
‣ range search
‣ nearest neighbor search

click to begin demo



‣ insertion
‣ range search
‣ nearest neighbor search
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Recursively partition plane into two halfplanes.
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Recursively partition plane into two halfplanes.
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Recursively partition plane into two halfplanes.
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4

Insertion in a 2d tree

1

2

3

4

1

23

4



Recursively partition plane into two halfplanes.
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Recursively partition plane into two halfplanes.
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Recursively partition plane into two halfplanes.
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Recursively partition plane into two halfplanes.
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Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

3

4

6

5

1

23

4 6

5



Recursively partition plane into two halfplanes.
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Recursively partition plane into two halfplanes.
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Recursively partition plane into two halfplanes.
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Recursively partition plane into two halfplanes.
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Recursively partition plane into two halfplanes.
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Recursively partition plane into two halfplanes.
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Recursively partition plane into two halfplanes.
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Recursively partition plane into two halfplanes.
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‣ insertion
‣ range search
‣ nearest neighbor search
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

6

Range search in a 2d tree
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).
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Range search in a 2d tree
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).
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2

4

6

7

8

9

10

5

2

87

10 9

3

4 6

5

1

1

3

search left subtree
check if query rectangle contains point 3



• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).
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Range search in a 2d tree
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).
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Range search in a 2d tree
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).
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Range search in a 2d tree
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).
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Range search in a 2d tree
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).
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Range search in a 2d tree
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).
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Range search in a 2d tree
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

18

Range search in a 2d tree
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

19

Range search in a 2d tree
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).
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2

3

7

8

9

10

2

87

10 9

3

1

1

4

4

5 5

6

6

return from function call



• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).
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Range search in a 2d tree
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• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).
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Range search in a 2d tree

2

3

7

8

9

10

2

87

10 9

3

1

1

4

4

5 5

6

6

done



‣ insertion
‣ range search
‣ nearest neighbor search
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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Nearest neighbor search in a 2d tree
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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Nearest neighbor search in a 2d tree
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.
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Nearest neighbor search in a 2d tree
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