
Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2011 · February 23, 2012 4:06:00 PM

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E

KD TREE DEMO

‣ insertion
‣ range search
‣ nearest neighbor search

click to begin demo

‣ insertion
‣ range search
‣ nearest neighbor search

2

Recursively partition plane into two halfplanes.

3

Insertion in a 2d tree

1

2

3

4

6

7

8

9

10

5

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

1

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

1

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

1

2

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

1

2

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

3

1

23

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

3

1

23

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

3

4

1

23

4

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

3

4

1

23

4

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

3

4

5

1

23

4

5

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

3

4

5

1

23

4

5

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

3

4

6

5

1

23

4 6

5

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

3

4

6

5

1

23

4 6

5

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

3

4

6

7

5

1

2

7

3

4 6

5

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

3

4

6

7

5

1

2

7

3

4 6

5

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

3

4

6

7

8

5

1

2

87

3

4 6

5

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

3

4

6

7

8

5

1

2

87

3

4 6

5

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

3

4

6

7

8

9

5

1

2

87

9

3

4 6

5

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

3

4

6

7

8

9

5

1

2

87

9

3

4 6

5

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

3

4

6

7

8

9

10

5

1

2

87

10 9

3

4 6

5

Recursively partition plane into two halfplanes.

4

Insertion in a 2d tree

1

2

3

4

6

7

8

9

10

5

1

2

87

10 9

3

4 6

5

‣ insertion
‣ range search
‣ nearest neighbor search

5

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

6

Range search in a 2d tree

1

2

3

4

6

7

8

9

10

5

1

2

87

10 9

3

4 6

5

find all points in 2d tree that are
contained in green query rectangle

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

7

Range search in a 2d tree

2

3

4

6

7

8

9

10

5

2

87

10 9

3

4 6

5

1

1

search root node
check if query rectangle contains point 1

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

8

Range search in a 2d tree

2

3

4

6

7

8

9

10

5

2

87

10 9

3

4 6

5

1

1

query rectangle to left of splitting line
search only in left subtree

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

9

Range search in a 2d tree

2

4

6

7

8

9

10

5

2

87

10 9

3

4 6

5

1

1

3

search left subtree
check if query rectangle contains point 3

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

10

Range search in a 2d tree

2

3

4

6

7

8

9

10

5

2

87

10 9

3

4 6

5

1

1

query rectangle intersects splitting line
search bottom and top subtrees

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

11

Range search in a 2d tree

2

3

4

6

7

8

9

10

5

2

87

10 9

3

4 6

5

1

1

search left subtree
check if query rectangle contains point 4

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

12

Range search in a 2d tree

2

3

6

7

8

9

10

5

2

87

10 9

3

6

5

1

1

4

4

query rectangle to left of splitting line
search only in left subtree

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

13

Range search in a 2d tree

2

3

6

7

8

9

10

5

2

87

10 9

3

6

5

1

1

4

4

search left subtree
check if query rectangle contains point 5

(search hit)

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

14

Range search in a 2d tree

2

3

6

7

8

9

10

2

87

10 9

3

6

1

1

4

4

5 5

query rectangle intersects splitting line
search bottom and top subtrees

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

15

Range search in a 2d tree

2

3

6

7

8

9

10

2

87

10 9

3

6

1

1

4

4

5 5

search bottom subtree
stop since empty

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

16

Range search in a 2d tree

2

3

6

7

8

9

10

2

87

10 9

3

6

1

1

4

4

5 5

search top subtree
stop since empty

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

17

Range search in a 2d tree

2

3

6

7

8

9

10

2

87

10 9

3

6

1

1

4

4

5 5

return from function call

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

18

Range search in a 2d tree

2

3

6

7

8

9

10

2

87

10 9

3

6

1

1

4

4

5 5

return from function call

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

19

Range search in a 2d tree

2

3

6

7

8

9

10

2

87

10 9

3

6

1

1

4

4

5 5

return from function call

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

20

Range search in a 2d tree

2

3

6

7

8

9

10

2

87

10 9

3

6

1

1

4

4

5 5

search top subtree
check if query rectangle contains point 6

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

21

Range search in a 2d tree

2

3

7

8

9

10

2

87

10 9

3

1

1

4

4

5 5

6

6

query rectangle to left of splitting line
search only in left subtree

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

22

Range search in a 2d tree

2

3

7

8

9

10

2

87

10 9

3

1

1

4

4

5 5

6

6

search left subtree
stop since empty

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

23

Range search in a 2d tree

2

3

7

8

9

10

2

87

10 9

3

1

1

4

4

5 5

6

return from function call

6

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

24

Range search in a 2d tree

2

3

7

8

9

10

2

87

10 9

3

1

1

4

4

5 5

6

6

return from function call

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

25

Range search in a 2d tree

2

3

7

8

9

10

2

87

10 9

3

1

1

4

4

5 5

6

6

return from function call

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

26

Range search in a 2d tree

2

3

7

8

9

10

2

87

10 9

3

1

1

4

4

5 5

6

6

done

‣ insertion
‣ range search
‣ nearest neighbor search

27

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

28

Nearest neighbor search in a 2d tree

2

3

4

7

8

9

10

5

1

2

87

10 9

3

4 6

5

query point

find closest points in 2d tree
to green query point

1

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

29

Nearest neighbor search in a 2d tree

2

3

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search root node
compute distance from query point to 1

(update champion nearest neighbor)

1

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

30

Nearest neighbor search in a 2d tree

2

3

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

1

query point is to the left of splitting line
search left subtree first

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

31

Nearest neighbor search in a 2d tree

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

3

search left subtree
compute distance from query point to 3

(update champion)

1

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

32

Nearest neighbor search in a 2d tree

2

3

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

query point is above splitting line
search top subtree first

1

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

33

Nearest neighbor search in a 2d tree

2

3

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search top subtree
compute distance from query point to 6

6

1

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

34

Nearest neighbor search in a 2d tree

2

3

4

6

7

8

9

10

5

2

87

10 9

3

4 6

5

1

query point is to left of splitting line
search left subtree first

1

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

35

Nearest neighbor search in a 2d tree

2

3

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search left subtree
return since empty

1

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

36

Nearest neighbor search in a 2d tree

2

3

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search right subtree
prune since nearest neighbor

can't be in subdivision

1

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

37

Nearest neighbor search in a 2d tree

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

return from function call
search bottom subtree next

1

3

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

38

Nearest neighbor search in a 2d tree

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search bottom subtree
compute distance from query point to 4

1

3

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

39

Nearest neighbor search in a 2d tree

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

query point is to left of splitting line
search left subtree first

1

3

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

40

Nearest neighbor search in a 2d tree

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search left subtree
compute distance from query point to 5

(update champion)

1

3

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

41

Nearest neighbor search in a 2d tree

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

query point is above splitting line
search top subtree first

1

3

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

42

Nearest neighbor search in a 2d tree

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search top subtree
return since empty

1

3

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

43

Nearest neighbor search in a 2d tree

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search bottom subtree
return since empty

1

3

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

44

Nearest neighbor search in a 2d tree

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

return from function call
search right subtree next

1

3

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

45

Nearest neighbor search in a 2d tree

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search right subtree
prune since nearest neighbor

can't be in subdivision

1

3

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

46

Nearest neighbor search in a 2d tree

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

return from function call

1

3

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

47

Nearest neighbor search in a 2d tree

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

return from function call
search right subtree next

1

3

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

48

Nearest neighbor search in a 2d tree

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search right subtree
prune since nearest neighbor

can't be in subdivision

1

3

6

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

49

Nearest neighbor search in a 2d tree

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

1

3

6

nearest neighbor = 5

