
Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2012 · February 6, 2012 4:52:25 AM

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

1.5 UNION FIND

Steps to developing a usable algorithm.

• Model the problem.

• Find an algorithm to solve it.

• Fast enough? Fits in memory?

• If not, figure out why.

• Find a way to address the problem.

• Iterate until satisfied.

The scientific method.

Mathematical analysis.

2

Subtext of today’s lecture (and this course)

3

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

Given a set of N objects.

• Union command: connect two objects.

• Find/connected query: is there a path connecting the two objects?

4

Dynamic connectivity

union(4, 3)

union(3, 8)

union(6, 5)

union(9, 4)

union(2, 1)

connected(0, 7)

connected(8, 9)

union(5, 0)

union(7, 2)

connected(0, 7)

union(1, 0)

union(6, 1)

0 1 2 3 4

5 6 7 8 9𐄂
✔

✔

5

Connectivity example

p

q

Q. Is there a path connecting p and q ?

A. Yes.

more difficult problem: find the path

Dynamic connectivity applications involve manipulating objects of all types.

• Pixels in a digital photo.

• Computers in a network.

• Friends in a social network.

• Transistors in a computer chip.

• Elements in a mathematical set.

• Variable names in Fortran program.

• Metallic sites in a composite system.

When programming, convenient to name sites 0 to N-1.

• Use integers as array index.

• Suppress details not relevant to union-find.

6

Modeling the objects

can use symbol table to translate from site
names to integers: stay tuned (Chapter 3)

We assume "is connected to" is an equivalence relation:

• Reflexive: p is connected to p.

• Symmetric: if p is connected to q, then q is connected to p.

• Transitive: if p is connected to q and q is connected to r,
then p is connected to r.

Connected components. Maximal set of objects that are mutually connected.

7

Modeling the connections

{ 0 } { 1 4 5 } { 2 3 6 7 }

3 connected components

0 1 2 3

4 5 6 7

Find query. Check if two objects are in the same component.

Union command. Replace components containing two objects with their union.

8

Implementing the operations

union(2, 5)

{ 0 } { 1 4 5 } { 2 3 6 7 }

3 connected components

0 1 2 3

4 5 6 7

{ 0 } { 1 2 3 4 5 6 7 }

2 connected components

0 1 2 3

4 5 6 7

9

Goal. Design efficient data structure for union-find.

• Number of objects N can be huge.

• Number of operations M can be huge.

• Find queries and union commands may be intermixed.

Union-find data type (API)

 public class UF public class UF public class UF

UF(int N)
initialize union-find data structure with

N objects (0 to N – 1)

void union(int p, int q) add connection between p and q

boolean connected(int p, int q) are p and q in the same component?

int find(int p) component identifier for p (0 to N–1)

int count() number of components

10

• Read in number of objects N from standard input.

• Repeat:
- read in pair of integers from standard input

- if they are not yet connected, connect them and print out pair

Dynamic-connectivity client

public static void main(String[] args)
{
 int N = StdIn.readInt();
 UF uf = new UF(N);
 while (!StdIn.isEmpty())
 {
 int p = StdIn.readInt();
 int q = StdIn.readInt();
 if (!uf.connected(p, q))
 {
 uf.union(p, q);
 StdOut.println(p + " " + q);
 }
 }
}

% more tiny.txt
10
4 3
3 8
6 5
9 4
2 1
8 9
5 0
7 2
6 1
1 0
6 7

11

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

12

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected iff they have the same id.

0, 5 and 6 are connected
1, 2, and 7 are connected

3, 4, 8, and 9 are connected

Quick-find [eager approach]

0 1 2 3 4

5 6 7 8 9

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

id[]

13

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected iff they have the same id.

Find. Check if p and q have the same id.

Union. To merge components containing p and q, change all entries
whose id equals id[p] to id[q].

after union of 6 and 1

problem: many values can change

Quick-find [eager approach]

id[6] = 0; id[1] = 1

6 and 1 are not connected

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

id[]

1 1

0 1

1 8

2 3

8 1

4 5

1 1

6 7

8 8

8 9

id[]

14

Quick-find demo

public class QuickFindUF
{
 private int[] id;

 public QuickFindUF(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++)
 id[i] = i;
 }

 public boolean connected(int p, int q)
 { return id[p] == id[q]; }

 public void union(int p, int q)
 {
 int pid = id[p];
 int qid = id[q];
 for (int i = 0; i < id.length; i++)
 if (id[i] == pid) id[i] = qid;
 }
}

15

change all entries with id[p] to id[q]

(at most 2N + 2 array accesses)

set id of each object to itself
(N array accesses)

Quick-find: Java implementation

check whether p and q

are in the same component
(2 array accesses)

Cost model. Number of array accesses (for read or write).

Quick-find defect. Union too expensive.

Ex. Takes N 2 array accesses to process sequence of N union commands
on N objects.

16

Quick-find is too slow

algorithm initialize union find

quick-find N N 1

order of growth of number of array accesses

quadratic

Rough standard (for now).

• 109 operations per second.

• 109 words of main memory.

• Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

• 109 union commands on 109 objects.

• Quick-find takes more than 1018 operations.

• 30+ years of computer time!

Quadratic algorithms don't scale with technology.

• New computer may be 10x as fast.

• But, has 10x as much memory ⇒ want to solve a problem that is 10x as big.

• With quadratic algorithm, takes 10x as long!

17

a truism (roughly)
since 1950!

Quadratic algorithms do not scale

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

18

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

Union. To merge components containing p and q,
set the id of p's root to the id of q's root.

19

3's root is 9; 5's root is 6
3 and 5 are not connected

Quick-union [lazy approach]

keep going until it doesn’t change
(algorithm ensures no cycles)

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

id[]

3

5

4

70 1

9

6 8

2

only one value changes
p

q
0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 6

8 9

id[]

3

54

70 1 9 6 8

2

p

q

20

Quick-union demo

Quick-union: Java implementation

public class QuickUnionUF
{
 private int[] id;

 public QuickUnionUF(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 }

 private int root(int i)
 {
 while (i != id[i]) i = id[i];
 return i;
 }

 public boolean connected(int p, int q)
 {
 return root(p) == root(q);
 }

 public void union(int p, int q)
 {
 int i = root(p)
 int j = root(q);
 id[i] = j;
 }
}

set id of each object to itself
(N array accesses)

chase parent pointers until reach root
(depth of i array accesses)

check if p and q have same root
(depth of p and q array accesses)

change root of p to point to root of q
(depth of p and q array accesses)

21

22

Cost model. Number of array accesses (for read or write).

Quick-find defect.

• Union too expensive (N array accesses).

• Trees are flat, but too expensive to keep them flat.

Quick-union defect.

• Trees can get tall.

• Find too expensive (could be N array accesses).

worst case

† includes cost of finding roots

Quick-union is also too slow

algorithm initialize union find

quick-find N N 1

quick-union N N † N

23

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

Weighted quick-union.

• Modify quick-union to avoid tall trees.

• Keep track of size of each tree (number of objects).

• Balance by linking root of smaller tree to root of larger tree.

24

Improvement 1: weighting

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

Weighted quick-union

weighted

quick-union

always chooses the
better alternative

might put the
larger tree lower

25

Weighted quick-union demo

26

Quick-union and weighted quick-union example

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

27

Data structure. Same as quick-union, but maintain extra array sz[i]
to count number of objects in the tree rooted at i.

Find. Identical to quick-union.

Union. Modify quick-union to:

• Link root of smaller tree to root of larger tree.

• Update the sz[] array.

 int i = root(p);
 int j = root(q);
 if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
 else { id[j] = i; sz[i] += sz[j]; }

Weighted quick-union: Java implementation

return root(p) == root(q);

Running time.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

28

Weighted quick-union analysis

3

x

5

4

2

7

0

1

8

9

6

N = 10
depth(x) = 3 ≤ lg N

29

Running time.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.
Pf. When does depth of x increase?
Increases by 1 when tree T1 containing x is merged into another tree T2.

• The size of the tree containing x at least doubles since | T 2 | ≥ | T 1 |.

• Size of tree containing x can double at most lg N times. Why?

Weighted quick-union analysis

 T2

T1

x

30

Running time.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.

† includes cost of finding roots

Weighted quick-union analysis

algorithm initialize union connected

quick-find N N 1

quick-union N N † N

weighted QU N lg N † lg N

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to point to that root.

31

Improvement 2: path compression

1211

9

10

8

6 7

3

x

2

54

0

1

root

p

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to point to that root.

32

Improvement 2: path compression

10

8

6 7

31211

9 2

54

0

1

root

x

p

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to point to that root.

33

Improvement 2: path compression

7

3

10

8

6

1211

9 2

54

0

1

root

x

p

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to point to that root.

34

Improvement 2: path compression

10

8

6 2

54

0

1

7

3

root

x

p

1211

9

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to point to that root.

35

Improvement 2: path compression

10

8

6

7

3

x

root

2

54

0

1

p

1211

9

Two-pass implementation: add second loop to root() to set the id[]
of each examined node to the root.

Simpler one-pass variant: Make every other node in path point to its
grandparent (thereby halving path length).

In practice. No reason not to! Keeps tree almost completely flat.
36

only one extra line of code !

private int root(int i)
{
 while (i != id[i])
 {
 id[i] = id[id[i]];
 i = id[i];
 }
 return i;
}

Path compression: Java implementation

37

Proposition. Starting from an empty data structure,
any sequence of M union-find operations on N objects
makes at most proportional to N + M lg* N array accesses.

• Proof is very difficult.

• But the algorithm is simple!

• Analysis can be improved to N + M α(M, N).

Linear-time algorithm for M union-find ops on N objects?

• Cost within constant factor of reading in the data.

• In theory, WQUPC is not quite linear.

• In practice, WQUPC is linear.

Amazing fact. No linear-time algorithm exists.

see COS 423

N lg* N

1 0

2 1

4 2

16 3

65536 4

265536 5

Weighted quick-union with path compression: amortized analysis

lg* function

in "cell-probe" model of computation

because lg* N is a constant in this universe

Bob Tarjan
(Turing Award '86)

Bottom line. WQUPC makes it possible to solve problems that
could not otherwise be addressed.

Ex. [109 unions and finds with 109 objects]

• WQUPC reduces time from 30 years to 6 seconds.

• Supercomputer won't help much; good algorithm enables solution.
38

M union-find operations on a set of N objects

algorithm worst-case time

quick-find M N

quick-union M N

weighted QU N + M log N

QU + path compression N + M log N

weighted QU + path compression N + M lg* N

Summary

39

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

40

• Percolation.

• Games (Go, Hex).
✓ Dynamic connectivity.

• Least common ancestor.

• Equivalence of finite state automata.

• Hoshen-Kopelman algorithm in physics.

• Hinley-Milner polymorphic type inference.

• Kruskal's minimum spanning tree algorithm.

• Compiling equivalence statements in Fortran.

• Morphological attribute openings and closings.

• Matlab's bwlabel() function in image processing.

Union-find applications

see also Assignment 1

A model for many physical systems:

• N-by-N grid of sites.

• Each site is open with probability p (or blocked with probability 1 - p).

• System percolates iff top and bottom are connected by open sites.

41

Percolation

N = 8

does not percolatepercolates

open site connected to top

blocked
site

open
site

no open site connected to top

does not percolatepercolates

open site connected to top

blocked
site

full
open
siteempty

open
site

no open site connected to top

A model for many physical systems:

• N-by-N grid of sites.

• Each site is open with probability p (or blocked with probability 1 - p).

• System percolates iff top and bottom are connected by open sites.

42

model system vacant site occupied site percolates

electricity material conductor insulated conducts

fluid flow material empty blocked porous

social interaction population person empty communicates

Percolation

Depends on site vacancy probability p.

43

Likelihood of percolation

p low (0.4)
does not percolate

p medium (0.6)
percolates?

p high (0.8)
percolates

When N is large, theory guarantees a sharp threshold p*.

• p > p*: almost certainly percolates.

• p < p*: almost certainly does not percolate.

Q. What is the value of p* ?

0.5930
0

1

1

site vacancy probability p

percolation
probability

p*

44

Percolation phase transition

N = 100

• Initialize N-by-N whole grid to be blocked.

• Declare random sites open until top connected to bottom.

• Vacancy percentage estimates p*.

45

Monte Carlo simulation

N = 20

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

46

Q. How to check whether an N-by-N system percolates?

Dynamic connectivity solution to estimate percolation threshold

open site

blocked site

N = 5

Q. How to check whether an N-by-N system percolates?

• Create an object for each site and name them 0 to N 2 – 1.

47

Dynamic connectivity solution to estimate percolation threshold

open site

blocked site

N = 5 0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

48

Q. How to check whether an N-by-N system percolates?

• Create an object for each site and name them 0 to N 2 – 1.

• Sites are in same component if connected by open sites.

Dynamic connectivity solution to estimate percolation threshold

open site

blocked site

N = 5

49

Q. How to check whether an N-by-N system percolates?

• Create an object for each site and name them 0 to N 2 – 1.

• Sites are in same component if connected by open sites.

• Percolates iff any site on bottom row is connected to site on top row.

Dynamic connectivity solution to estimate percolation threshold

brute-force algorithm: N 2 calls to connected()

open site

blocked site

N = 5 top row

bottom row

Clever trick. Introduce two virtual sites (and connections to top and bottom).

• Percolates iff virtual top site is connected to virtual bottom site.

50

Dynamic connectivity solution to estimate percolation threshold

virtual top site

virtual bottom site

efficient algorithm: only 1 call to connected()

open site

blocked site

N = 5 top row

bottom row

Q. How to model as dynamic connectivity problem when opening a new site?

51

Dynamic connectivity solution to estimate percolation threshold

open site

blocked site

N = 5

open this site

Q. How to model as dynamic connectivity problem when opening a new site?
A. Connect newly opened site to all of its adjacent open sites.

52

Dynamic connectivity solution to estimate percolation threshold

open this site

open site

blocked site

N = 5

up to 4 calls to union()

53

Q. What is percolation threshold p* ?
A. About 0.592746 for large square lattices.

Fast algorithm enables accurate answer to scientific question.

constant known only via simulation

Percolation threshold

0.5930
0

1

1

site vacancy probability p

percolation
probability

p*

N = 100

Steps to developing a usable algorithm.

• Model the problem.

• Find an algorithm to solve it.

• Fast enough? Fits in memory?

• If not, figure out why.

• Find a way to address the problem.

• Iterate until satisfied.

The scientific method.

Mathematical analysis.

54

Subtext of today’s lecture (and this course)

