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Algorithms
F O U R T H  E D I T I O N

R O B E R T  S E D G E W I C K   K E V I N  W A Y N E

4.4  SHORTEST PATHS

‣ edge-weighted digraph API
‣ shortest-paths properties
‣ Dijkstra's algorithm
‣ edge-weighted DAGs
‣ negative weights



Given an edge-weighted digraph, find the shortest (directed) path from s to t.
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Shortest paths in a weighted digraph

An edge-weighted digraph and a shortest path

4->5  0.35 
5->4  0.35 
4->7  0.37 
5->7  0.28 
7->5  0.28 
5->1  0.32 
0->4  0.38
0->2  0.26 
7->3  0.39 
1->3  0.29 
2->7  0.34
6->2  0.40 
3->6  0.52
6->0  0.58
6->4  0.93 

0->2  0.26
2->7  0.34
7->3  0.39
3->6  0.52 

edge-weighted digraph

shortest path from 0 to 6



Google maps

3



Continental U.S. routes (August 2010)
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• PERT/CPM.

• Map routing.

• Seam carving.

• Robot navigation. 

• Texture mapping.

• Typesetting in TeX.

• Urban traffic planning.

• Optimal pipelining of VLSI chip.

• Telemarketer operator scheduling.

• Routing of telecommunications messages.

• Network routing protocols (OSPF, BGP, RIP).

• Exploiting arbitrage opportunities in currency exchange.

• Optimal truck routing through given traffic congestion pattern.
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Reference:  Network Flows:  Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest path applications

http://en.wikipedia.org/wiki/Seam_carving



Shortest path variants

Which vertices?

• Source-sink:  from one vertex to another.

• Single source:  from one vertex to every other.

• All pairs:  between all pairs of vertices.

Restrictions on edge weights?

• Nonnegative weights.

• Arbitrary weights.

• Euclidean weights.

Cycles?

• No directed cycles.

• No "negative cycles."

Simplifying assumption.  There exists a shortest path from s to each vertex v.
6
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‣ edge-weighted digraph API
‣ shortest-paths properties
‣ Dijkstra's algorithm
‣ edge-weighted DAGs
‣ negative weights
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Weighted directed edge API

Idiom for processing an edge e:  int v = e.from(), w = e.to();

v
weight

w

  public class DirectedEdge  public class DirectedEdge  public class DirectedEdge

DirectedEdge(int v, int w, double weight) weighted edge v→w

int from() vertex v

int to() vertex w

double weight() weight of this edge

String toString() string representation
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Weighted directed edge:  implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

public class DirectedEdge
{
   private final int v, w;
   private final double weight;

   public DirectedEdge(int v, int w, double weight)
   {
      this.v = v;
      this.w = w;
      this.weight = weight;
   }

   public int from()
   {  return v;  }

   public int to()
   {  return w;  }

   public int weight()
   {  return weight; }
}

from() and to() replace

either() and other()
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Edge-weighted digraph API

Conventions.  Allow self-loops and parallel edges.

            public class EdgeWeightedDigraph            public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V)EdgeWeightedDigraph(int V) edge-weighted digraph with V vertices

EdgeWeightedDigraph(In in)EdgeWeightedDigraph(In in) edge-weighted digraph from input stream

void addEdge(DirectedEdge e)addEdge(DirectedEdge e) add weighted directed edge e

Iterable<DirectedEdge> adj(int v)adj(int v) edges pointing from v

int V()V() number of vertices

int E()E() number of edges

Iterable<DirectedEdge> edges()edges() all edges

String toString()toString() string representation
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Edge-weighted digraph:  adjacency-lists representation

Edge-weighted digraph representation

adj
0

1

2

3

4

5

6

7

0 2 .26 0 4 .38

Bag objects

reference to a
DirectedEdge

object

8
15
4 5  0.35 
5 4  0.35 
4 7  0.37 
5 7  0.28 
7 5  0.28 
5 1  0.32 
0 4  0.38
0 2  0.26 
7 3  0.39 
1 3  0.29 
2 7  0.34
6 2  0.40 
3 6  0.52
6 0  0.58
6 4  0.93

1 3 .29

2 7 .34

3 6 .52

4 7 .37 4 5 .35

5 1 .32 5 7 .28 5 4 .35

6 4 .93 6 0 .58 6 2 .40

7 3 .39 7 5 .28

tinyEWD.txt
V

E
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Edge-weighted digraph:  adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.

public class EdgeWeightedDigraph
{
   private final int V; 
   private final Bag<Edge>[] adj;

   public EdgeWeightedDigraph(int V)
   {
      this.V = V;
      adj = (Bag<DirectedEdge>[]) new Bag[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Bag<DirectedEdge>();
   }

   public void addEdge(DirectedEdge e)
   {
      int v = e.from();
      adj[v].add(e);
   }

   public Iterable<DirectedEdge> adj(int v)
   {  return adj[v];  }
}

add edge e = v→w only to
v's adjacency list
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Single-source shortest paths API

Goal.  Find the shortest path from s to every other vertex.

SP sp = new SP(G, s);

for (int v = 0; v < G.V(); v++)

{

   StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));

   for (DirectedEdge e : sp.pathTo(v))

      StdOut.print(e + "  ");

   StdOut.println();

}

             public class SP             public class SP             public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in graph G

double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

boolean hasPathTo(int v) is there a path from s to v?



14

Single-source shortest paths API

Goal.  Find the shortest path from s to every other vertex.

% java SP tinyEWD.txt 0

0 to 0 (0.00):

0 to 1 (1.05): 0->4 0.38  4->5 0.35  5->1 0.32

0 to 2 (0.26): 0->2 0.26

0 to 3 (0.99): 0->2 0.26  2->7 0.34  7->3 0.39

0 to 4 (0.38): 0->4 0.38

0 to 5 (0.73): 0->4 0.38  4->5 0.35

0 to 6 (1.51): 0->2 0.26  2->7 0.34  7->3 0.39  3->6 0.52

0 to 7 (0.60): 0->2 0.26  2->7 0.34

             public class SP             public class SP             public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in graph G

double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

boolean hasPathTo(int v) is there a path from s to v?
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‣ edge-weighted digraph API
‣ shortest-paths properties
‣ Dijkstra's algorithm
‣ edge-weighted DAGs
‣ negative weights



Goal.  Find the shortest path from s to every other vertex.

Observation.  A shortest-paths tree (SPT) solution exists. Why?

Consequence.  Can represent the SPT with two vertex-indexed arrays:

•  distTo[v] is length of shortest path from s to v.

•  edgeTo[v] is last edge on shortest path from s to v.
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Data structures for single-source shortest paths

shortest-paths tree from 0

Shortest paths data structures

    edgeTo[]    distTo[]
 0    null        0
 1    5->1 0.32   1.05
 2    0->2 0.26   0.26
 3    7->3 0.37   0.97
 4    0->4 0.38   0.38
 5    4->5 0.35   0.73
 6    3->6 0.52   1.49
 7    2->7 0.34   0.60



Goal.  Find the shortest path from s to every other vertex.

Observation.  A shortest-paths tree (SPT) solution exists. Why?

Consequence.  Can represent the SPT with two vertex-indexed arrays:

•  distTo[v] is length of shortest path from s to v.

•  edgeTo[v] is last edge on shortest path from s to v.
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Data structures for single-source shortest paths

  public double distTo(int v)

  {  return distTo[v];  }

  public Iterable<DirectedEdge> pathTo(int v)

  {

     Stack<DirectedEdge> path = new Stack<DirectedEdge>();

     for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])

        path.push(e);

     return path;

  }



Relax edge e = v→w.

•  distTo[v] is length of shortest known path from s to v.

•  distTo[w] is length of shortest known path from s to w.

•  edgeTo[w] is last edge on shortest known path from s to w.

• If e = v→w gives shorter path to w through v, update distTo[w] and edgeTo[w].

18

Edge relaxation

black edges
are in edgeTo[]

s

3.1

7.2 4.4

v→w successfully relaxes

1.3

v

w



19

Edge relaxation

Relax edge e = v→w.

•  distTo[v] is length of shortest known path from s to v.

•  distTo[w] is length of shortest known path from s to w.

•  edgeTo[w] is last edge on shortest known path from s to w.

• If e = v→w gives shorter path to w through v, update distTo[w] and edgeTo[w].

 private void relax(DirectedEdge e)
 {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }       
 }
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Shortest-paths optimality conditions 

Proposition.  Let G be an edge-weighted digraph.
Then distTo[] are the shortest path distances from s iff:

• For each vertex v, distTo[v] is the length of some path from s to v.

• For each edge e = v→w,  distTo[w] ≤ distTo[v] + e.weight().

Pf.  ⇐  [ necessary ]

• Suppose that distTo[w] > distTo[v] + e.weight() for some edge e = v→w.

• Then, e gives a path from s to w (through v) of length less than distTo[w].

s

w

v 3.1

7.2

distTo[w] > distTo[v] + e.weight()

distTo[w]

distTo[v]

weight of v->w is 1.3
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Shortest-paths optimality conditions

Proposition.  Let G be an edge-weighted digraph.
Then distTo[] are the shortest path distances from s iff:

• For each vertex v, distTo[v] is the length of some path from s to v.

• For each edge e = v→w,  distTo[w] ≤ distTo[v] + e.weight().

Pf.  ⇒  [ sufficient ]

• Suppose that s = v0 → v1 → v2 → … → vk = w is a shortest path from s to w.

• Then, 

• Add inequalities; simplify; and substitute distTo[v0] = distTo[s] = 0:

    distTo[w] = distTo[vk] ≤ ek.weight() + ek-1.weight() + … + e1.weight()

• Thus, distTo[w] is the weight of shortest path to w.  

distTo[vk] ≤ distTo[vk-1] + ek.weight()

distTo[vk-1] ≤ distTo[vk-2] + ek-1.weight()

...

distTo[v1] ≤ distTo[v0] + e1.weight()

weight of shortest path from s to wweight of some path from s to w

ei = ith edge on shortest 
path from s to w



Proposition.  Generic algorithm computes SPT (if it exists) from s.
Pf sketch.

• Throughout algorithm, distTo[v] is the length of a simple path from s to v 
(and edgeTo[v] is last edge on path).

• Each successful relaxation decreases distTo[v] for some v.

• The entry distTo[v] can decrease at most a finite number of times.  
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Generic shortest-paths algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:
    -  Relax any edge.

Generic algorithm (to compute SPT from s)



Efficient implementations.  How to choose which edge to relax?
Ex 1.  Dijkstra's algorithm (nonnegative weights).
Ex 2.  Topological sort algorithm (no directed cycles).
Ex 3.  Bellman-Ford algorithm (no negative cycles).
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Generic shortest-paths algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:
    -  Relax any edge.

Generic algorithm (to compute SPT from s)
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‣ edge-weighted digraph API
‣ shortest-paths properties
‣ Dijkstra's algorithm
‣ edge-weighted DAGs
‣ negative weights
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Edsger W. Dijkstra:  select quotes

Edsger W. Dijkstra
Turing award 1972

“ Do only what only you can do. ”

“ In their capacity as a tool, computers will be but a ripple on the
   surface of our culture.  In their capacity as intellectual challenge,
   they are without precedent in the cultural history of mankind. ”

“ The use of COBOL cripples the mind; its teaching should,
   therefore, be regarded as a criminal offence. ”

“ It is practically impossible to teach good programming to
   students that have had a prior exposure to BASIC: as potential
   programmers they are mentally mutilated beyond hope of
   regeneration. ”

“ APL is a mistake, carried through to perfection. It is the
   language of the future for the programming techniques
   of the past:  it creates a new generation of coding bums. ”
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Edsger W. Dijkstra:  select quotes



• Consider vertices in increasing order of distance from s
(non-tree vertex with the lowest distTo[] value).

• Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo
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• Consider vertices in increasing order of distance from s
(non-tree vertex with the lowest distTo[] value).

• Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo
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v   distTo[]  edgeTo[]

0     0.0        -

1     5.0       0→1 

2    14.0       5→2 

3    17.0       2→3 

4     9.0       0→4 

5    13.0       4→5 

6    25.0       2→6 

7     8.0       0→7 

shortest-paths tree from vertex s



Dijkstra’s algorithm visualization
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Dijkstra’s algorithm visualization
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Proposition.  Dijkstra's algorithm computes a SPT in any edge-weighted 
digraph with nonnegative weights.

Pf.  

• Each edge e = v→w is relaxed exactly once (when v is relaxed),
leaving  distTo[w] ≤  distTo[v] +  e.weight().

• Inequality holds until algorithm terminates because:
- distTo[w] cannot increase 
- distTo[v] will not change

• Thus, upon termination, shortest-paths optimality conditions hold.  

Dijkstra's algorithm:  correctness proof

31

distTo[] values are monotone decreasing

edge weights are nonnegative and we choose
lowest distTo[] value at each step
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Dijkstra's algorithm:  Java implementation

public class DijkstraSP
{
   private DirectedEdge[] edgeTo;
   private double[] distTo;
   private IndexMinPQ<Double> pq;

   public DijkstraSP(EdgeWeightedDigraph G, int s)
   {
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
      pq = new IndexMinPQ<Double>(G.V());

      for (int v = 0; v < G.V(); v++) 
         distTo[v] = Double.POSITIVE_INFINITY;
      distTo[s] = 0.0;

      pq.insert(s, 0.0);
      while (!pq.isEmpty())
      {
          int v = pq.delMin();
          for (DirectedEdge e : G.adj(v))
             relax(e);
      }
    }
 }

relax vertices in order
of distance from s
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Dijkstra's algorithm:  Java implementation

   private void relax(DirectedEdge e)
   {
      int v = e.from(), w = e.to();
      if (distTo[w] > distTo[v] + e.weight())
      {
          distTo[w] = distTo[v] + e.weight();
          edgeTo[w] = e;
          if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
          else                pq.insert     (w, distTo[w]);
      }       
   }

update PQ
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Dijkstra's algorithm:  which priority queue?

Depends on PQ implementation:  V insert, V delete-min, E decrease-key.

Bottom line.

• Array implementation optimal for dense graphs.

• Binary heap much faster for sparse graphs.

• d-way heap worth the trouble in performance-critical situations.

• Fibonacci heap best in theory, but not worth implementing.

† amortized

PQ implementation insert delete-min decrease-key total

array 1 V 1 V 2

binary heap log V log V log V E log V

d-way heap
(Johnson 1975)

d logd V d logd V logd V E log E/V V

Fibonacci heap
(Fredman-Tarjan 1984)

1 † log V † 1 † E + V log V
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Priority-first search

Insight.  Four of our graph-search methods are the same algorithm!

• Maintain a set of explored vertices S.

• Grow S by exploring edges with exactly one endpoint leaving S.

DFS.        Take edge from vertex which was discovered most recently.
BFS.        Take edge from vertex which was discovered least recently.
Prim.        Take edge of minimum weight.
Dijkstra.  Take edge to vertex that is closest to S.

Challenge.  Express this insight in reusable Java code.

S

e

s

v

w
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‣ edge-weighted digraph API
‣ shortest-paths properties
‣ Dijkstra's algorithm
‣ edge-weighted DAGs
‣ negative weights



Q.  Suppose that an edge-weighted digraph has no directed cycles. 
Is it easier to find shortest paths than in a general digraph?

A.  Yes!

37

Acyclic edge-weighted digraphs



• Consider vertices in topologically order.

• Relax all edges pointing from vertex.

38

Topological sort algorithm demo
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• Consider vertices in topologically order.

• Relax all edges pointing from vertex.
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Topological sort algorithm demo
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0     0.0        -
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5    13.0       4→5 

6    25.0       2→6 

7     8.0       0→7 
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shortest-paths tree from vertex s

s



Proposition.  Topological sort algorithm computes SPT in any edge-weighted 
DAG in time proportional to E + V.

Pf.  

• Each edge e = v→w is relaxed exactly once (when v is relaxed),
leaving distTo[w] ≤  distTo[v] +  e.weight().

• Inequality holds until algorithm terminates because:
- distTo[w] cannot increase 
- distTo[v] will not change

• Thus, upon termination, shortest-paths optimality conditions hold.  

40

Shortest paths in edge-weighted DAGs

distTo[] values are monotone decreasing

because of topological order, no edge pointing to v
will be relaxed after v is relaxed

edge weights
can be negative!
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Shortest paths in edge-weighted DAGs

public class AcyclicSP
{
   private DirectedEdge[] edgeTo;
   private double[] distTo;

   public AcyclicSP(EdgeWeightedDigraph G, int s)
   {
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];

      for (int v = 0; v < G.V(); v++) 
         distTo[v] = Double.POSITIVE_INFINITY;
      distTo[s] = 0.0;

      Topological topological = new Topological(G);
      for (int v : topological.order())
         for (DirectedEdge e : G.adj(v))
            relax(e);
    }
 }

topological order



Seam carving.  [Avidan and Shamir]  Resize an image without distortion for 
display on cell phones and web browsers.   

42

Content-aware resizing



Seam carving.  [Avidan and Shamir]  Resize an image without distortion for 
display on cell phones and web browsers.   

In the wild.  Photoshop CS 5, Imagemagick, GIMP, ...
43

Content-aware resizing



To find vertical seam:

• Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors. 

• Weight of pixel = energy function of 8 neighboring pixels.

• Seam = shortest path from top to bottom.

44

Content-aware resizing



To find vertical seam:

• Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors. 

• Weight of pixel = energy function of 8 neighboring pixels.

• Seam = shortest path from top to bottom.

45

Content-aware resizing

seam



To remove vertical seam:

• Delete pixels on seam (one in each row).

46

Content-aware resizing

seam



To remove vertical seam:

• Delete pixels on seam (one in each row).

47

Content-aware resizing



Formulate as a shortest paths problem in edge-weighted DAGs.

• Negate all weights.

• Find shortest paths.

• Negate weights in result.

Key point.  Topological sort algorithm works even with negative edge weights.
48

Longest paths in edge-weighted DAGs

equivalent: reverse sense of equality in relax()

5->4  0.35 
4->7  0.37 
5->7  0.28 
5->1  0.32 
4->0  0.38
0->2  0.26 
3->7  0.39 
1->3  0.29 
7->2  0.34
6->2  0.40 
3->6  0.52
6->0  0.58
6->4  0.93 

5->4 -0.35 
4->7 -0.37 
5->7 -0.28 
5->1 -0.32 
4->0 -0.38
0->2 -0.26 
3->7 -0.39 
1->3 -0.29 
7->2 -0.34
6->2 -0.40 
3->6 -0.52
6->0 -0.58
6->4 -0.93 

longest paths input shortest paths input

5->4 -0.35 
4->7 -0.37 
5->7 -0.28 
5->1 -0.32 
4->0 -0.38
0->2 -0.26 
3->7 -0.39 
1->3 -0.29 
7->2 -0.34
6->2 -0.40 
3->6 -0.52
6->0 -0.58
6->4 -0.93 



Longest paths in edge-weighted DAGs:  application

Parallel job scheduling.  Given a set of jobs with durations and precedence 
constraints, schedule the jobs (by finding a start time for each) so as to 
achieve the minimum completion time, while respecting the constraints.

49

Parallel job scheduling solution

0
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6 8 2
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41 700 91 123 173

A job scheduling problem

 0    41.0    1  7  9
 1    51.0    2 
 2    50.0    
 3    36.0    
 4    38.0    
 5    45.0    
 6    21.0    3  8
 7    32.0    3  8
 8    32.0    2
 9    29.0    4  6

job duration must complete
before



CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:

• Source and sink vertices.

• Two vertices (begin and end) for each job.

• Three edges for each job.
- begin to end (weighted by duration)

- source to begin (0 weight)

- end to sink (0 weight)

• One edge for each precedence constraint (0 weight).

Critical path method

50Edge-weighted DAG representation of job scheduling

41
0 0

51
1 1

50
2 2

36
3 3

38
4 4

45
5 5

21
6 6

32
7 7

32
8 8

29 
9 9

precedence constraint
(zero weight)

job start job finish

duration

zero-weight 
edge to each

job start

zero-weight 
edge from each

job finish

A job scheduling problem

 0    41.0    1  7  9
 1    51.0    2 
 2    50.0    
 3    36.0    
 4    38.0    
 5    45.0    
 6    21.0    3  8
 7    32.0    3  8
 8    32.0    2
 9    29.0    4  6

job duration must complete
before



Critical path method

51

CPM.  Use longest path from the source to schedule each job.

Longest paths solution to job scheduling example

41
0 0

51
1 1

50
2 2

36
3 3

38
4 4

45
5 5

21
6 6

32
7 7

32
8 8

29 
9 9

critical path

duration

Parallel job scheduling solution

0

4

3

5

9

7

6 8 2

1

41 700 91 123 173
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‣ edge-weighted digraph API
‣ shortest-paths properties
‣ Dijkstra's algorithm
‣ edge-weighted DAGs
‣ negative weights



Dijkstra.  Doesn’t work with negative edge weights.

Re-weighting.  Add a constant to every edge weight doesn’t work.

Bad news.  Need a different algorithm.
53

Shortest paths with negative weights:  failed attempts

0

3

1

2

4

2-9

6

0

3

1

11

13

20

15

Dijkstra selects vertex 3 immediately after 0.

But shortest path from 0 to 3 is 0→1→2→3.

Adding 9 to each edge weight changes the 

shortest path from 0→1→2→3 to 0→3.



Def.  A negative cycle is a directed cycle whose sum of edge weights is negative.

Proposition.  A SPT exists iff no negative cycles.
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Negative cycles

An edge-weighted digraph with a negative cycle

4->5  0.35 
5->4 -0.66 
4->7  0.37 
5->7  0.28 
7->5  0.28 
5->1  0.32 
0->4  0.38
0->2  0.26 
7->3  0.39 
1->3  0.29 
2->7  0.34
6->2  0.40 
3->6  0.52
6->0  0.58
6->4  0.93 

digraph

5->4->7->5 
negative cycle  (-0.66 + 0.37 + 0.28)

0->4->7->5->4->7->5...->1->3->6 
shortest path from 0 to 6

assuming all vertices reachable from s



for (int i = 0; i < G.V(); i++)
   for (int v = 0; v < G.V(); v++)
      for (DirectedEdge e : G.adj(v))
         relax(e);
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Bellman-Ford algorithm

pass i (relax each edge)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:
    - Relax each edge.

Bellman-Ford algorithm
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Repeat V times: relax all E edges.

Bellman-Ford algorithm demo

0→1   5.0

0→4   9.0

0→7   8.0

1→2  12.0

1→3  15.0

1→7   4.0

2→3   3.0

2→6  11.0

3→6   9.0

4→5   4.0

4→6  20.0

4→7   5.0

5→2   1.0

5→6  13.0

7→5   6.0

7→2   7.0

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

312

20

13

11

9

an edge-weighted digraph
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Repeat V times: relax all E edges.

Bellman-Ford algorithm demo

0

4

7

1

5

2

6

v   distTo[]  edgeTo[]

0     0.0        -

1     5.0       0→1 

2    14.0       5→2 

3    17.0       2→3 

4     9.0       0→4 

5    13.0       4→5 

6    25.0       2→6 

7     8.0       0→7 

3

shortest-paths tree from vertex s

s
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Bellman-Ford algorithm visualization

Bellman-Ford (250 vertices)

4 7 10

13 SPT

 passes



Proposition.  Dynamic programming algorithm computes SPT in any edge-
weighted digraph with no negative cycles in time proportional to E × V.

Pf idea.  After pass i, found shortest path containing at most i edges.

59

Bellman-Ford algorithm:  analysis

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:
    - Relax each edge.

Bellman-Ford algorithm
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Observation.  If distTo[v] does not change during pass i,
no need to relax any edge pointing from v in pass i +1.

FIFO implementation.  Maintain queue of vertices whose distTo[] changed.

Overall effect.  

• The running time is still proportional to E × V in worst case.

• But much faster than that in practice.

Bellman-Ford algorithm:  practical improvement

be careful to keep at most one copy
of each vertex on queue (why?)
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Bellman-Ford algorithm:  Java implementation

public class BellmanFordSP
{
   private double[] distTo;       
   private DirectedEdge[] edgeTo; 
   private boolean[] onQ; 
   private Queue<Integer> queue;
   
   public BellmanFordSPT(EdgeWeightedDigraph G, int s)
   {
      distTo = new double[G.V()];
      edgeTo = new DirectedEdge[G.V()];
      onq    = new boolean[G.V()];
      queue  = new Queue<Integer>();

      for (int v = 0; v < V; v++) 
         distTo[v] = Double.POSITIVE_INFINITY;
      distTo[s] = 0.0;

      queue.enqueue(s);
      while (!queue.isEmpty())
      {
         int v = queue.dequeue();
         onQ[v] = false;
         for (DirectedEdge e : G.adj(v))
            relax(e);            
      }
   }
}

queue of vertices whose
distTo[] value changes

private void relax(DirectedEdge e)
{
   int v = e.from(), w = e.to();
   if (distTo[w] > distTo[v] + e.weight())
   {
       distTo[w] = distTo[v] + e.weight();
       edgeTo[w] = e;
       if (!onQ[w])
       {
          queue.enqueue(w);
          onQ[w] = true;
       }
   }       
}
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Single source shortest-paths implementation:  cost summary

Remark 1.  Directed cycles make the problem harder.
Remark 2.  Negative weights make the problem harder.
Remark 3.  Negative cycles makes the problem intractable.

algorithm restriction typical case worst case extra space

topological sort
no directed

cycles
E + V E + V V

Dijkstra
(binary heap)

no negative 
weights

E log V E log V V

Bellman-Ford
no negative

E V E V V

Bellman-Ford
(queue-based)

cycles
E + V E V V
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Finding a negative cycle

Negative cycle.  Add two method to the API for SP.

boolean hasNegativeCycle() is there a negative cycle?

Iterable <DirectedEdge> negativeCycle() negative cycle reachable from s

An edge-weighted digraph with a negative cycle

4->5  0.35 
5->4 -0.66 
4->7  0.37 
5->7  0.28 
7->5  0.28 
5->1  0.32 
0->4  0.38
0->2  0.26 
7->3  0.39 
1->3  0.29 
2->7  0.34
6->2  0.40 
3->6  0.52
6->0  0.58
6->4  0.93 

digraph

5->4->7->5 
negative cycle  (-0.66 + 0.37 + 0.28)

0->4->7->5->4->7->5...->1->3->6 
shortest path from 0 to 6
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Finding a negative cycle

Observation.  If there is a negative cycle, Bellman-Ford gets stuck in loop, 
updating distTo[] and edgeTo[] entries of vertices in the cycle.

Proposition.  If any vertex v is updated in phase V, there exists a negative 
cycle (and can trace back edgeTo[v] entries to find it).

In practice.  Check for negative cycles more frequently.

edgeTo[v]

s 3

v

2 6

1

4

5



Problem.  Given table of exchange rates, is there an arbitrage opportunity?

Ex.  $1,000  ⇒  741 Euros  ⇒  1,012.206 Canadian dollars  ⇒  $1,007.14497.
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Negative cycle application:  arbitrage detection

1000 ×  0.741 × 1.366 × 0.995 = 1007.14497

USD EUR GBP CHF CAD

USD

EUR

GBP

CHF

CAD

1 0.741 0.657 1.061 1.011

1.350 1 0.888 1.433 1.366

1.521 1.126 1 1.614 1.538

0.943 0.698 0.620 1 0.953

0.995 0.732 0.650 1.049 1



Currency exchange graph.

• Vertex = currency.

• Edge = transaction, with weight equal to exchange rate.

• Find a directed cycle whose product of edge weights is  > 1.

Challenge.  Express as a negative cycle detection problem.
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Negative cycle application:  arbitrage detection

An arbitrage opportunity

USD

0.
74
1 1.

35
0

0.888

1.126

0.
62
0

1.
61
4

1.049

0.953
1.011

0.995

0.
65
0

1.
53
8

0.
73
2

1.
36
6

0.657

1.5211.061

0.943

1.433

0.698

EUR

GBP

CHFCAD

0.741 * 1.366 * .995 = 1.00714497



Model as a negative cycle detection problem by taking logs.

• Let weight of edge v→w be  - ln (exchange rate from currency v to w).

• Multiplication turns to addition; > 1 turns to < 0.

• Find a directed cycle whose sum of edge weights is < 0 (negative cycle).

Remark.  Fastest algorithm is extraordinarily valuable!

A negative cycle that represents
an arbitrage opportunity

USD

.2
99
8 -.

30
01

.1188

-.1187

.4
78
0

-.
47
87

-.0478

.0481
-.0109

.0050

.4
30
8

-.
43
05

.3
12
0

-.
31
19

.4201

-.4914-.0592

.0587

-.3598
.3595

EUR

GBP

CHFCAD

replace each
weight w

with !ln(w)

.2998 - .3119 + .0050 = -.0071

-ln(.741) -ln(1.366) -ln(.995)
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Negative cycle application:  arbitrage detection



Shortest paths summary

Dijkstra’s algorithm.

• Nearly linear-time when weights are nonnegative.

• Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.

• Arise in applications.

• Faster than Dijkstra’s algorithm.

• Negative weights are no problem.

Negative weights and negative cycles.

• Arise in applications.

• If no negative cycles, can find shortest paths via Bellman-Ford.

• If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.
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