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Algorithms
F O U R T H  E D I T I O N

R O B E R T  S E D G E W I C K   K E V I N  W A Y N E

6.5  REDUCTIONS

‣ designing algorithms
‣ establishing lower bounds
‣ classifying problems
‣ intractability



2

Bird’s-eye view

Desiderata.  Classify problems according to computational requirements.

Frustrating news.  Huge number of problems have defied classification.

complexity order of growth examples

linear N
min, max, median,

Burrows-Wheeler transform, ...

linearithmic N log N
sorting, convex hull,

closest pair, farthest pair, ...

quadratic N2 ?

⋮ ⋮ ⋮

exponential cN ?
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Bird’s-eye view

Desiderata.  Classify problems according to computational requirements.

Desiderata'.
Suppose we could (could not) solve problem X efficiently.
What else could (could not) we solve efficiently?

“ Give me a lever long enough and a fulcrum on which to 
    place it, and I shall move the world.  ”    — Archimedes
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Reduction

Def.  Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Cost of solving X  =  total cost of solving Y  +  cost of reduction.

perhaps many calls to Y
on problems of different sizes

preprocessing and postprocessing

instance I
(of X)

solution to I
Algorithm

for Y

Algorithm for X
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Reduction

Def.  Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Ex 1.  [element distinctness reduces to sorting]
To solve element distinctness on N items:

• Sort N items.

• Check adjacent pairs for equality.

Cost of solving element distinctness.  N  log N  +  N .

cost of sorting
cost of reduction

instance I
(of X)

solution to I
Algorithm

for Y

Algorithm for X
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Reduction

Def.  Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Ex 2.  [3-collinear reduces to sorting]
To solve 3-collinear instance on N points in the plane:

• For each point, sort other points by polar angle or slope.

- check adjacent triples for collinearity

Cost of solving 3-collinear.  N 2 log N  +  N 2.

cost of sorting cost of reduction

instance I
(of X)

solution to I
Algorithm

for Y

Algorithm for X
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‣ designing algorithms
‣ establishing lower  bounds
‣ classifying problems
‣ intractability
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Reduction:  design algorithms

Def.  Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Design algorithm.  Given algorithm for Y, can also solve X.

Ex.

• Element distinctness reduces to sorting.

• 3-collinear reduces to sorting.

• CPM reduces to topological sort.  [shortest paths lecture]

• h-v line intersection reduces to 1d range searching.  [geometric BST lecture]

• Baseball elimination reduces to maxflow.  [assignment 7]

• Burrows-Wheeler transform reduces to suffix sort.  [assignment 8]

• …

Mentality.  Since I know how to solve Y, can I use that algorithm to solve X ?

programmer’s version:  I have code for Y. Can I use it for X?



Sorting.  Given N distinct integers, rearrange them in ascending order.

Convex hull.  Given N points in the plane, identify the extreme points
of the convex hull (in counterclockwise order).

Proposition.  Convex hull reduces to sorting.
Pf.  Graham scan algorithm.

Cost of convex hull.  N log N  +  N.
9

Convex hull reduces to sorting

convex hull sorting

1251432
2861534
3988818
4190745
13546464
89885444
43434213
34435312

cost of reductioncost of sorting



Shortest paths on edge-weighted graphs and digraphs

Proposition. Undirected shortest paths (with nonnegative weights) reduces to 
directed shortest path.
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Shortest paths on edge-weighted graphs and digraphs

Proposition. Undirected shortest paths (with nonnegative weights) reduces to 
directed shortest path.

Pf.  Replace each undirected edge by two directed edges.
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Shortest paths on edge-weighted graphs and digraphs

Proposition. Undirected shortest paths (with nonnegative weights) reduces to 
directed shortest path.

Cost of undirected shortest paths.  E log V  +  E.
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paths in digraph cost of reduction
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Caveat.  Reduction is invalid for edge-weighted graphs with negative weights
(even if no negative cycles).

Remark.  Can still solve shortest-paths problem in undirected graphs
(if no negative cycles), but need more sophisticated techniques.

13

Shortest paths with negative weights

ts 7  –4

ts 7  –4

reduction creates
negative cycles

reduces to weighted
non-bipartite matching (!)

7  –4



Some reductions involving familiar problems
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element
distinctness sorting

convex hull
median

Delaunay
triangulation

2d closest
pair

2d Euclidean
MST

2d farthest
pair

computational geometry

linear
programming
(see ORF 307)

directed shortest paths
(nonnegative)

bipartite
matching

 maximum flow 

arbitrage

shortest paths
(no neg cycles)

undirected shortest paths
(nonnegative)

baseball
elimination

combinatorial optimization
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‣ designing algorithms
‣ establishing lower  bounds
‣ classifying problems
‣ intractability
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Bird's-eye view

Goal.  Prove that a problem requires a certain number of steps.
Ex.  In decision tree model, any compare-based sorting algorithm
requires Ω(N log N) compares in the worst case.

Bad news.  Very difficult to establish lower bounds from scratch.
Good news.  Can spread Ω(N log N) lower bound to Y by reducing sorting to Y.

assuming cost of reduction is not too high

argument must apply to all 
conceivable algorithms

b < c

yes no

a < c

yes

a < c

yes no

a c b c a b

b a ca b c b < c

yes no

b c a c b a

a < b

yes no

no
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Linear-time reductions

Def.  Problem X linear-time reduces to problem Y if X can be solved with:

• Linear number of standard computational steps.

• Constant number of calls to Y.

Ex.  Almost all of the reductions we've seen so far.  [Which ones weren't?]

Establish lower bound:

• If X takes Ω(N log N) steps, then so does Y.

• If X takes Ω(N 2) steps, then so does Y.

Mentality.

• If I could easily solve Y, then I could easily solve X.

• I can’t easily solve X.

• Therefore, I can’t easily solve Y.
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Lower bound for convex hull

Proposition.  In quadratic decision tree model, any algorithm for sorting
N integers requires Ω(N log N) steps.

Proposition.  Sorting linear-time reduces to convex hull.
Pf.  [see next slide]

Implication.  Any ccw-based convex hull algorithm requires Ω(N log N) ops. 

allows linear or quadratic tests:
 xi < xj or (xj – xi) (xk – xi) – (xj ) (xj – xi) < 0

linear or 
quadratic tests

sorting

1251432
2861534
3988818
4190745
13546464
89885444
43434213

convex hull

lower-bound mentality:
if I can solve convex hull

efficiently, I can sort efficiently



Proposition.  Sorting linear-time reduces to convex hull.

• Sorting instance:  x1, x2, ... , xN.

• Convex hull instance:  (x1 , x12 ), (x2, x22 ), ... , (xN , xN2 ).

Pf.

• Region { x :  x2  ≥  x } is convex  ⇒  all points are on hull.

• Starting at point with most negative x, counterclockwise order of hull points 
yields integers in ascending order.

19

Sorting linear-time reduces to convex hull

f (x) = x2

(xi , xi2 )

x

y

lower-bound mentality:
if I can solve convex hull

efficiently, I can sort efficiently
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Lower bound for 3-COLLINEAR

3-SUM.  Given N distinct integers, are there three that sum to 0?

3-COLLINEAR.  Given N distinct points in the plane,
are there 3 that all lie on the same line?

3-collinear

recall Assignment 3

3-sum

1251432
-2861534
3988818
-4190745
13546464
89885444
-43434213
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Lower bound for 3-COLLINEAR

3-SUM.  Given N distinct integers, are there three that sum to 0?

3-COLLINEAR.  Given N distinct points in the plane,
are there 3 that all lie on the same line?

Proposition.  3-SUM linear-time reduces to 3-COLLINEAR.
Pf.  [next two slides]

Conjecture.  Any algorithm for 3-SUM requires Ω(N 2) steps.
Implication.  No sub-quadratic algorithm for 3-COLLINEAR likely.

your N2 log N algorithm was pretty good
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3-SUM linear-time reduces to 3-COLLINEAR

Proposition.  3-SUM linear-time reduces to 3-COLLINEAR.

• 3-SUM instance:  x1, x2, ... , xN .

• 3-COLLINEAR instance:  (x1 , x13 ), (x2, x23 ), ... , (xN , xN3 ).

Lemma.  If a, b, and c are distinct, then a + b + c = 0

if and only if (a, a3), (b, b3), and (c, c3) are collinear.

(1, 1)

(2, 8)

(-3, -27) -3 + 2 + 1 = 0

f (x) = x3
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3-SUM linear-time reduces to 3-COLLINEAR

Proposition.  3-SUM linear-time reduces to 3-COLLINEAR.

• 3-SUM instance:  x1, x2, ... , xN .

• 3-COLLINEAR instance:  (x1 , x13 ), (x2, x23 ), ... , (xN , xN3 ).

Lemma.  If a, b, and c are distinct, then a + b + c = 0

if and only if (a, a3), (b, b3), and (c, c3) are collinear.

Pf.  Three distinct points (a, a3), (b, b3), and (c, c3) are collinear iff:

0 =

������

a a3 1
b b3 1
c c3 1

������

= a(b3 � c3)� b(a3 � c3) + c(a3 � b3)

= (a� b)(b� c)(c� a)(a + b + c)



More linear-time reductions and lower bounds
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Delaunay
triangulation

2d convex hull

sorting

element distinctness
(N log N lower bound)

2d Euclidean MST

2d closest pair

sorting

 3-sum
(conjectured N 2 lower bound) 

3-collinear

3-concurrent

dihedral
rotation

min area triangle

3-sum



Establishing lower bounds through reduction is an important tool
in guiding algorithm design efforts.

Q.  How to convince yourself no linear-time convex hull algorithm exists?
A1.  [hard way]  Long futile search for a linear-time algorithm.
A2.  [easy way]  Linear-time reduction from sorting.

Q.  How to convince yourself no sub-quadratic 3-COLLINEAR algorithm likely.
A1.  [hard way]  Long futile search for a sub-quadratic algorithm.
A2.  [easy way]  Linear-time reduction from 3-SUM.

Establishing lower bounds:  summary

25
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‣ designing algorithms
‣ establishing lower  bounds
‣ classifying problems
‣ intractability



Desiderata.  Problem with algorithm that matches lower bound.
Ex.  Sorting, convex hull, and closest pair have complexity N log N.

Desiderata'.  Prove that two problems X and Y have the same complexity.

• First, show that problem X linear-time reduces to Y.

• Second, show that Y linear-time reduces to X.

• Conclude that X and Y have the same complexity.

Classifying problems:  summary

27

even if we don't know what it is!



PRIME.  Given an integer x (represented in binary), is x prime?
COMPOSITE.  Given an integer x, does x have a nontrivial factor?

Proposition.  PRIME linear-time reduces to COMPOSITE.

Primality testing

28

147573952589676412927

147573952589676412931

 public static boolean isPrime(BigInteger x)
 {
    if (isComposite(x)) return false;
    else                return true;
 }

composite

prime



Primality testing

PRIME.  Given an integer x (represented in binary), is x prime?
COMPOSITE.  Given an integer x, does x have a nontrivial factor?

Proposition.  COMPOSITE linear-time reduces to PRIME.

29

 public static boolean isComposite(BigInteger x)
 {
    if (isPrime(x)) return false;
    else            return true;
 }

147573952589676412927

147573952589676412931

prime

composite



Caveat

PRIME.  Given an integer x (represented in binary), is x prime?
COMPOSITE.  Given an integer x, does x have a nontrivial factor?

Proposition.  PRIME linear-time reduces to COMPOSITE.
Proposition.  COMPOSITE linear-time reduces to PRIME.
Conclusion.  PRIME and COMPOSITE have the same complexity.

A possible real-world scenario.

• System designer specs the APIs for project.

• Alice implements isComposite() using isPrime().

• Bob implements isPrime() using isComposite().

• Infinite reduction loop!

• Who's fault?

30

best known deterministic algorithm
is about N6 for N-bit integer
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Integer arithmetic reductions

Integer multiplication.  Given two N-bit integers, compute their product.
Brute force.  N 2 bit operations.

1 1 0 1 0 1 0 1

× 0 1 1 1 1 1 0 1

1 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1
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Integer arithmetic reductions

Integer multiplication.  Given two N-bit integers, compute their product.
Brute force.  N 2 bit operations.

Q.  Is brute-force algorithm optimal? 

problem arithmetic order of growth

integer multiplication a × b M(N)

integer division a / b,  a mod b M(N)

integer square a 2 M(N)

integer square root ⎣√a ⎦ M(N)

integer arithmetic problems with the same complexity as integer multiplication
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Complexity of integer multiplication history

Remark.  GNU Multiple Precision Library uses one of five
different algorithm depending on size of operands.

year algorithm order of growth

1962 Karatsuba-Ofman N 1.585

1963 Toom-3, Toom-4 N 1.465 , N 1.404

1966 Toom-Cook N 1 + ε

1971 Schönhage–Strassen N log N log log N

2007 Fürer N log N 2 log*N

? ? N

number of bit operations to multiply two N-bit integers

used in Maple, Mathematica, gcc, cryptography, ...
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Linear algebra reductions

Matrix multiplication.  Given two N-by-N matrices, compute their product.
Brute force.  N 3 flops.

0.1 0.2 0.8 0.1

0.5 0.3 0.9 0.6

0.1 0.0 0.7 0.4

0.0 0.3 0.3 0.1

×

0.4 0.3 0.1 0.1

0.2 0.2 0.0 0.6

0.0 0.0 0.4 0.5

0.8 0.4 0.1 0.9

=

0.16 0.11 0.34 0.62

0.74 0.45 0.47 1.22

0.36 0.19 0.33 0.72

0.14 0.10 0.13 0.42

row i

column j j

i

0.5 · 0.1 +  0.3 · 0.0  +  0.9 · 0.4  +  0.6 · 0.1 = 0.47
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Linear algebra reductions

Matrix multiplication.  Given two N-by-N matrices, compute their product.
Brute force.  N 3 flops.

Q.  Is brute-force algorithm optimal?

problem linear algebra order of growth

matrix multiplication A × B MM(N)

matrix inversion A–1 MM(N)

determinant | A | MM(N)

system of linear equations Ax = b MM(N)

LU decomposition A = L U MM(N)

least squares min ||Ax – b||2 MM(N)

numerical linear algebra problems with the same complexity as matrix multiplication
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Complexity of matrix multiplication history

year algorithm order of growth

1969 Strassen N 2.808

1978 Pan N 2.796

1979 Bini N 2.780

1981 Schönhage N 2.522

1982 Romani N 2.517

1982 Coppersmith-Winograd N 2.496

1986 Strassen N 2.479

1989 Coppersmith-Winograd N 2.376

2010 Strother N 2.3737

2011 Williams N 2.3727

? ? N 2 + ε

number of floating-point operations to multiply two N-by-N matrices
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‣ designing algorithms
‣ establishing lower  bounds
‣ classifying problems
‣ intractability
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Bird's-eye view

Def.  A problem is intractable if it can't be solved in polynomial time.
Desiderata.  Prove that a problem is intractable.

Two problems that provably require exponential time.

• Given a constant-size program, does it halt in at most K steps?

• Given N-by-N checkers board position, can the first player force a win? 

Frustrating news.  Very few successes.

input size = c + lg K

using forced capture rule
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Literal. A boolean variable or its negation.

Clause. An or of 3 distinct literals.

Conjunctive normal form.  An and of clauses.

3-SAT.  Given a CNF formula Φ consisting of k clauses over n literals,
does it have a satisfying truth assignment?

Applications.  Circuit design, program correctness, ...

3-satisfiability

xi   or   ¬xi

C1 = (¬x1 ∨ x2 ∨ x3)

Φ = (C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5)

(¬T ∨  T ∨  F)  ∧  (T ∨  ¬T ∨  F)  ∧(¬T ∨  ¬T ∨  ¬F)  ∧  (¬T ∨  ¬T ∨  T)  ∧  (¬T ∨  F ∨  T)

x1   x2   x3   x4

T    T    F    T
yes instance

Φ  =  (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬ x2 ∨ x4) ∧ (¬x2 ∨ x3 ∨ x4)



3-satisfiability is conjectured to be intractable

Q.  How to solve an instance of 3-SAT with n variables?
A.  Exhaustive search:  try all 2n truth assignments.

Q.  Can we do anything substantially more clever?

Conjecture (P ≠ NP).  3-SAT is intractable (no poly-time algorithm).

40

consensus opinion
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Polynomial-time reductions

Problem X poly-time (Cook) reduces to problem Y if X can be solved with:

• Polynomial number of standard computational steps.

• Polynomial number of calls to Y.

Establish intractability.  If 3-SAT poly-time reduces to Y, then Y is intractable.
(assuming 3-SAT is intractable)

Mentality.

• If I could solve Y in poly-time, then I could also solve 3-SAT in poly-time.

• 3-SAT is believed to be intractable.

• Therefore, so is Y.

instance I
(of X)

solution to I
Algorithm

for Y

Algorithm for X



An independent set is a set of vertices, no two of which are adjacent.

IND-SET.  Given a graph G and an integer k, find an independent set of size k.

Applications.  Scheduling, computer vision, clustering, ...
42

Independent set

k = 9



Proposition.  3-SAT poly-time reduces to IND-SET.

Pf.  Given an instance Φ of 3-SAT, create an instance G of IND-SET:

• For each clause in Φ, create 3 vertices in a triangle.

• Add an edge between each literal and its negation.

43

3-satisfiability reduces to independent set

Φ  =  (x1 ∨ x2 ∨ x3)  ∧  (¬x1 ∨ ¬x2 ∨ x4)  ∧  (¬x1 ∨ x3 ∨ ¬x4)  ∧  (x1 ∨ x3 ∨ x4)

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4



Proposition.  3-SAT poly-time reduces to IND-SET.

Pf.  Given an instance Φ of 3-SAT, create an instance G of IND-SET:

• For each clause in Φ, create 3 vertices in a triangle.

• Add an edge between each literal and its negation.

• G has independent set of size k  ⇒  Φ satisfiable. 
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3-satisfiability reduces to independent set

set literals corresponding to k vertices in independent set to true
(set remaining literals in any consistent manner)

Φ  =  (x1 ∨ x2 ∨ x3)  ∧  (¬x1 ∨ ¬x2 ∨ x4)  ∧  (¬x1 ∨ x3 ∨ ¬x4)  ∧  (x1 ∨ x3 ∨ x4)

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4



Proposition.  3-SAT poly-time reduces to IND-SET.

Pf.  Given an instance Φ of 3-SAT, create an instance G of IND-SET:

• For each clause in Φ, create 3 vertices in a triangle.

• Add an edge between each literal and its negation.

• G has independent set of size k  ⇒  Φ satisfiable. 

• Φ satisfiable  ⇒  G has independent set of size k.

45

3-satisfiability reduces to independent set

for each of k clauses, include in independent set one vertex corresponding to a true literal

Φ  =  (x1 ∨ x2 ∨ x3)  ∧  (¬x1 ∨ ¬x2 ∨ x4)  ∧  (¬x1 ∨ x3 ∨ ¬x4)  ∧  (x1 ∨ x3 ∨ x4)

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4



Proposition.  3-SAT poly-time reduces to IND-SET.

Implication.   Assuming 3-SAT is intractable, so is IND-SET.

46

3-satisfiability reduces to independent set

Φ  =  (x1 ∨ x2 ∨ x3)  ∧  (¬x1 ∨ ¬x2 ∨ x4)  ∧  (¬x1 ∨ x3 ∨ ¬x4)  ∧  (x1 ∨ x3 ∨ x4)

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4

lower-bound mentality:
if I could solve IND-SET efficiently,

I could solve 3-SAT efficiently



ILP.  Given a system of linear inequalities, find an integral solution.

Context.  Cornerstone problem in operations research.
Remark.  Finding a real-valued solution is tractable (linear programming).

47

Integer linear programming

3x1 + 5x2 + 2x3 + x4 + 4x5  ≥  10

5x1 + 2x2 + 4x4 + 1x5  ≤  7

x1 + x3 + 2x4  ≤  2

3x1 + 4x3 + 7x4  ≤  7

 x1 + x4  ≤  1

 x1 + x3 + x5  ≤  1

all xi  =  { 0, 1 }

linear inequalities

integer variables

x1   x2   x3   x4   x5

0    1    0    1    1
yes instance:



Proposition.  IND-SET poly-time reduces to ILP.
Pf.  Given an instance { G, k } of IND-SET, create an instance of ILP as follows: 

Intuition.  xi = 1 if and only if vertex vi is in independent set.
48

Independent set reduces to integer linear programming

x1 + x2 + x3 + x4 + x5  =  3

x1 + x2  ≤  1

x2 + x3  ≤  1

x1 + x3  ≤  1

 x1 + x4  ≤  1

 x3 + x5  ≤  1

all xi  =  { 0, 1 }

number of vertices
selected

at most one vertex
selected from each edge

v2 v3 v5

v4v1

binary variables

is there an independent set of size 3?

is there a feasible solution?



Proposition.  3-SAT poly-time reduces to IND-SET.
Proposition.  IND-SET poly-time reduces to ILP.

Transitivity.  If X poly-time reduces to Y and Y poly-time reduces to Z,
then X poly-time reduces to Z.

Implication.   Assuming 3-SAT is intractable, so is ILP. 

49

3-satisfiability reduces to integer linear programming

lower-bound mentality:
if I could solve ILP efficiently,

 I could solve IND-SET efficiently;
if I could solve IND-SET efficiently,

I could solve 3-SAT efficiently
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More poly-time reductions from 3-satisfiability

3-SAT

VERTEX COVER

HAM-CYCLECLIQUE

IND-SET3-COLOR

EXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

ILP

KNAPSACK

Dick Karp
'85 Turing award

3
-SAT

 red
uces to ILP

TSP

BIN-PACKING

Conjecture.  3-SAT is intractable.
Implication.  All of these problems are intractable.



Implications of poly-time reductions from 3-satisfiability

Establishing intractability through poly-time reduction is an important tool
in guiding algorithm design efforts.

Q.  How to convince yourself that a new problem is (probably) intractable?
A1.  [hard way]  Long futile search for an efficient algorithm (as for 3-SAT).
A2.  [easy way]  Reduction from 3-SAT.

Caveat.  Intricate reductions are common.

51
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Search problems

Search problem.  Problem where you can check a solution in poly-time.

Ex 1.  3-SAT.

Ex 2.  IND-SET.

x1 = true,  x2 = true,  x3 = true,  x4 = true

v2 v3 v5

v4v1

Φ  =  (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x3 ∨ x4)

{ v2 ,  v4,  v5 }

k = 3
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P vs. NP

P.  Set of search problems solvable in poly-time.
Importance.  What scientists and engineers can compute feasibly. 

NP.  Set of search problems.
Importance.  What scientists and engineers aspire to compute feasibly.

Fundamental question.

Consensus opinion.  No.
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Cook’s theorem

An NP problem is NP-complete if all problems in NP poly-time to reduce to it.

Cook's theorem.  3-SAT is NP-complete.
Corollary.  3-SAT is tractable if and only if P = NP.

Two worlds.

NP

P NPC

P ≠ NP

P = NP

P = NP
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Implications of Cook’s theorem

3-SAT

IND-SET VERTEX COVER

HAM-CYCLECLIQUE

3-COLOR

EXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

ILP

KNAPSACK

TSP

BIN-PACKING

3-COLOR

reduces to 3-SAT

Stephen Cook
'82 Turing award

All of these problems (and many, many more)
poly-time reduce to 3-SAT.
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Implications of Karp + Cook

3-SAT

VERTEX COVER

CLIQUE

3-COLOR

EXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

KNAPSACK

3-SAT

reduces to 3-COLOR

TSP

BIN-PACKING

3-COLOR

reduces to 3-SAT

All of these problems are NP-complete; they are 
manifestations of the same really hard problem.

IND-SET

ILP

+

HAM-CYCLE
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Birds-eye view:  review

Desiderata.  Classify problems according to computational requirements.

Frustrating news.  Huge number of problems have defied classification.

complexity order of growth examples

linear N
min, max, median,

Burrows-Wheeler transform, ...

linearithmic N log N
sorting, convex hull,

closest pair, farthest pair, ...

quadratic N2 ???

⋮ ⋮ ⋮

exponential cN ???
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Birds-eye view:  revised

Desiderata.  Classify problems according to computational requirements.

Good news.  Can put many problems into equivalence classes.

complexity order of growth examples

linear N
min, max, median,

Burrows-Wheeler transform, ...

linearithmic N log N
sorting, convex hull,

closest pair, farthest pair, ...

M(N) ?
integer multiplication,

division, square root, ...

3-SUM complete probably N2 3-SUM, 3-COLLINEAR,
3-CONCURRENT, ...

MM(N) ?
matrix multiplication, Ax = b,
least square, determinant, ...

⋮ ⋮ ⋮

NP-complete probably not Nb 3-SAT, IND-SET, ILP, ...
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Complexity zoo

Complexity class.  Set of problems that share some computational property.

Bad news.  Lots of complexity classes.

Text

http://qwiki.stanford.edu/index.php/Complexity_Zoo
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Summary

Reductions are important in theory to:

• Establish tractability.

• Establish intractability.

• Classify problems according to their computational requirements.

Reductions are important in practice to:

• Design algorithms.

• Design reusable software modules.

- stacks, queues, priority queues, symbol tables, sets, graphs
- sorting, regular expressions, Delaunay triangulation

- MST, shortest path, maxflow, linear programming

• Determine difficulty of your problem and choose the right tool.
- use exact algorithm for tractable problems

- use heuristics for intractable problems


