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Algorithms
F O U R T H  E D I T I O N

R O B E R T  S E D G E W I C K   K E V I N  W A Y N E

Linear Programming

‣ brewer’s problem
‣ simplex algorithm
‣ implementations
‣ duality
‣ modeling



Overview: introduction to advanced topics

Main topics.  [next 3 lectures]

• Linear programming: the ultimate practical problem-solving model.

• NP: the ultimate theoretical problem-solving model.

• Reduction: design algorithms, establish lower bounds, classify problems.

• Combinatorial search: coping with intractability.

Shifting gears.

• From individual problems to problem-solving models.

• From linear/quadratic to polynomial/exponential scale.

• From details of implementation to conceptual framework.

Goals

• Place algorithms we've studied in a larger context.

• Introduce you to important and essential ideas.

• Inspire you to learn more about algorithms!
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Linear programming

What is it?  Quintessential problem-solving model for optimal allocation of 
scarce resources, among a number of competing activities that encompasses:

• Shortest paths, maxflow, MST, matching, assignment, ...

• A x = b, 2-person zero-sum games, ...

Why significant?

• Fast commercial solvers available.

• Widely applicable problem-solving model.

• Key subroutine for integer programming solvers.

Ex:  Delta claims that LP
saves $100 million per year.

maximize 13A + 23B

subject
to the 

constraints

  5A + 15B ≤ 480
subject
to the 

constraints
  4A +   4B ≤ 160

subject
to the 

constraints
35A + 20B ≤ 1190

    A ,     B ≥ 0

to learn much much 
more, see ORF 307
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Applications

Agriculture.  Diet problem.
Computer science.  Compiler register allocation, data mining.
Electrical engineering.  VLSI design, optimal clocking. 
Energy.  Blending petroleum products.
Economics.  Equilibrium theory, two-person zero-sum games.
Environment.  Water quality management. 
Finance.  Portfolio optimization.
Logistics.  Supply-chain management.
Management.  Hotel yield management.
Marketing.  Direct mail advertising. 
Manufacturing.  Production line balancing, cutting stock.
Medicine.  Radioactive seed placement in cancer treatment.
Operations research.  Airline crew assignment, vehicle routing.
Physics.  Ground states of 3-D Ising spin glasses.
Telecommunication.  Network design, Internet routing.
Sports.  Scheduling ACC basketball, handicapping horse races.
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‣ brewer’s problem
‣ simplex algorithm
‣ implementations
‣ duality
‣ modeling

The Allocation of Resources by Linear Programming by Robert Bland,
Scientific American, Vol. 244, No. 6, June 1981.



Small brewery produces ale and beer.

• Production limited by scarce resources:  corn, hops, barley malt.

• Recipes for ale and beer require different proportions of resources.
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Toy LP example:  brewer’s problem

$13 profit per barrel $23 profit per barrel

corn (480 lbs) hops (160 oz) malt (1190 lbs)



Brewer’s problem: choose product mix to maximize profits.

ale beer corn hops malt profit

34 0 179 136 1190 $442

0 32 480 128 640 $736

19.5 20.5 405 160 1092.5 $725

12 28 480 160 980 $800

? ? > $800 ?
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Toy LP example:  brewer’s problem

34 barrels × 35 lbs malt  = 1190 lbs
[ amount of available malt ]

corn (480 lbs) hops (160 oz) malt (1190 lbs) $13 profit per barrel $23 profit per barrel

good are
indivisible



Linear programming formulation.

• Let A be the number of barrels of ale.

• Let B be the number of barrels of beer.
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Brewer’s problem:  linear programming formulation    

maximize 13A + 23B

subject
to the 

constraints

  5A + 15B ≤ 480
subject
to the 

constraints
  4A +   4B ≤ 160

subject
to the 

constraints
35A + 20B ≤ 1190

    A ,     B ≥ 0

ale beer

corn

hops

malt

profits



Inequalities define halfplanes; feasible region is a convex polygon.
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Brewer’s problem:  feasible region

(34, 0)

(0, 32)

(12, 28)

(26, 14)

(0, 0) ale

beer
corn

5A + 15B ≤ 480

hops
4A + 4B ≤ 160

malt
35A + 20B ≤ 1190



(34, 0)

(0, 32)

(12, 28)

(26, 14)

(0, 0)
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Brewer’s problem:  objective function

13A + 23B = $800

13A + 23B = $1600

13A + 23B = $442

profit

7

ale

beer



Regardless of objective function, optimal solution occurs at an extreme point.

(34, 0)

(0, 32)

(12, 28)

(26, 14)

(0, 0)
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Brewer’s problem:  geometry

extreme point

7

ale

beer

intersection of 2 constraints in 2d
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Standard form linear program

Goal.  Maximize linear objective function of n nonnegative variables,
subject to m linear equations.

• Input: real numbers  aij, cj, bi.

• Output: real numbers  xj.

Caveat.  No widely agreed notion of "standard form."

maximize      cT x  

subject

to the 
constraints

A x  =  bsubject

to the 
constraints    x  ≥  0

matrix versionprimal problem (P)

linear means no x2, xy, arccos(x),  etc.

maximize c1 x1 + c2 x2 +  …  + cn xn

subject
to the 

constraints

  a11 x1 +   a12 x2 +  …  +   a1n xn = b1

subject
to the 

constraints

  a21 x1 +   a22 x2 +  …  +   a2n xn = b2
subject
to the 

constraints       ⋮        ⋮  ⋮        ⋮     ⋮  

subject
to the 

constraints

  am1 x1 +   am2 x2 +  …  +   amn xn = bm

  x1 ,   x2 ,  …  ,    xn ≥ 0
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Converting the brewer’s problem to the standard form

Original formulation.

Standard form.

• Add variable Z and equation corresponding to objective function.

• Add slack variable to convert each inequality to an equality.

• Now a 6-dimensional problem.

maximize 13A + 23B

subject
to the 

constraints

  5A + 15B ≤ 480
subject
to the 

constraints
  4A +   4B ≤ 160

subject
to the 

constraints
35A + 20B ≤ 1190

    A ,     B ≥ 0

maximize Z

subject
to the 

constraints

13A + 23B − Z = 0

subject
to the 

constraints

  5A + 15B + SCSC = 480subject
to the 

constraints   4A +   4B + SHSHSH = 160

subject
to the 

constraints

35A + 20B ++ SMSM = 1190

    A ,     B , SCSC , SCSCSC ,, SMSM ≥ 0
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Other reductions to standard form

Minimization problem.  Replace min 13A + 15B  with  max – 13A – 15B.

≥ constraints.  Replace 5A + 15B  ≥  480 with 5A + 15B –  SC  =  480, SC  ≥  0.

Unrestricted variables.  Replace A with A = A+ –  A –,   A+ ≥  0 ,  A–  ≥  0.



Inequalities define halfspaces; feasible region is a convex polyhedron.

A set is convex if for any two points a and b in the set, so is ½ (a + b).

An extreme point of a set is a point in the set that can't be written as
½ (a + b), where a and b are two distinct points in the set.

Warning.  Don't always trust intuition in higher dimensions.
15

Geometry

convexnot convex

extreme 
point



Extreme point property.  If there exists an optimal solution to (P),
then there exists one that is an extreme point.

• Number of extreme points to consider is finite.

• But number of extreme points can be exponential!

Greedy property.  Extreme point optimal iff no better adjacent extreme point.
16

Geometry (continued)

local optima are global optima
(follows because objective function is linear

and feasible region is convex)
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‣ brewer’s problem
‣ simplex algorithm
‣ implementations
‣ duality
‣ modeling
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Simplex algorithm

Simplex algorithm.  [George Dantzig, 1947] 

• Developed shortly after WWII in response to logistical problems,
including Berlin airlift.

• Ranked as one of top 10 scientific algorithms of 20th century. 

Generic algorithm.

• Start at some extreme point.

• Pivot from one extreme point to an adjacent one.

• Repeat until optimal.

How to implement?  Linear algebra.

never decreasing objective function



A basis is a subset of m of the n variables.

Basic feasible solution (BFS).

• Set n – m nonbasic variables to 0, solve for remaining m variables.

• Solve m equations in m unknowns.

• If unique and feasible  ⇒  BFS.

• BFS  ⇔  extreme point.

{A, B, SM }

(12, 28)

{B, SH, SM }

(0, 32)

{SH, SM, SC }

(0, 0)

{A, SH, SC }

(34, 0)

{A, B, SC }

(26, 14)
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Simplex algorithm: basis

ale

beer

{A, B, SH }

(19.41, 25.53)

maximize Z

subject
to the 

constraints

13A + 23B − Z = 0

subject
to the 

constraints

  5A + 15B + SC = 480subject
to the 

constraints   4A +   4B + SH = 160

subject
to the 

constraints

35A + 20B + SM = 1190

    A ,    B , SC , SH , SM ≥ 0

basic feasible
solution

infeasible



maximize Z

subject
to the 

constraints

13A + 23B − Z = 0

subject
to the 

constraints

  5A + 15B + SC = 480subject
to the 

constraints   4A + 4B + SH = 160

subject
to the 

constraints

35A + 20B + SM = 1190

    A ,    B , SC , SH , SM ≥ 0
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Simplex algorithm: initialization

Initial basic feasible solution.  

• Start with slack variables { SC , SH , SM } as the basis.

• Set non-basic variables A and B to 0.

• 3 equations in 3 unknowns yields SC = 480, SH = 160, SM = 1190.

no algebra needed

basis = { SC, SH, SM }
A = B = 0

Z = 0
SC = 480 
SH = 160 

SM = 1190

one basic variable per row



basis = { SC, SH, SM }
A = B = 0

Z = 0
SC = 480 
SH = 160 

SM = 1190
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Simplex algorithm: pivot 1

substitute  B = (1/15) (480 – 5A – SC) and add B into the basis
 (rewrite 2nd equation, eliminate B in 1st, 3rd, and 4th equations)

basis = { B, SH, SM }
A = SC = 0
Z = 736
B = 32 
SH = 32 

SM = 550

maximize Z

subject
to the 

constraints

 (16/3) A   − (23/15) SC − Z = -736

subject
to the 

constraints

   (1/3) A + B + (1/15) SC = 32subject
to the 

constraints    (8/3) A   − (4/15) SC + SH = 32

subject
to the 

constraints

(85/3) A   −  (4/3) SC + SM = 550

           A , B ,           SC , SH , SM ≥ 0

which basic variable
does B replace?

maximize Z

subject
to the 

constraints

13A + 23B − Z = 0

subject
to the 

constraints

  5A + 15B + SC = 480subject
to the 

constraints   4A + 4B + SH = 160

subject
to the 

constraints

35A + 20B + SM = 1190

    A ,    B , SC , SH , SM ≥ 0

pivot
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Simplex algorithm: pivot 1

Q.  Why pivot on column 2 (corresponding to variable B)?

• Its objective function coefficient is positive.
(each unit increase in B from 0 increases objective value by $23)

• Pivoting on column 1 (corresponding to A) also OK.

Q.  Why pivot on row 2?

• Preserves feasibility by ensuring RHS  ≥  0.

• Minimum ratio rule:  min { 480/15,  160/4,  1190/20 }.

basis = { SC, SH, SM }
A = B = 0

Z = 0
SC = 480 
SH = 160 

SM = 1190

maximize Z

subject
to the 

constraints

13A + 23B − Z = 0

subject
to the 

constraints

  5A + 15B + SC = 480subject
to the 

constraints   4A + 4B + SH = 160

subject
to the 

constraints

35A + 20B + SM = 1190

    A ,    B , SC , SH , SM ≥ 0

pivot

positive coefficient



basis = { B, SH, SM }
A = SC = 0
Z = 736
B = 32 
SH = 32 

SM = 550

maximize Z

subject
to the 

constraints

(16/3) A − (23/15) SC − Z = -736

subject
to the 

constraints

  (1/3) A + B +  (1/15) SC = 32subject
to the 

constraints   (8/3) A   − (4/15) SC + SH = 32

subject
to the 

constraints

(85/3) A   −  (4/3) SC + SM = 550

          A , B ,           SC , SH , SM ≥ 0
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Simplex algorithm: pivot 2

basis = { A, B, SM }
SC = SH = 0

Z = 800
B = 28 
A = 12 

SM = 110

maximize Z

subject
to the 

constraints

−            SC −         2 SH − Z = -800

subject
to the 

constraints

 B +  (1/10) SC +   (1/8) SH = 28subject
to the 

constraints  A   − (1/10) SC +   (3/8) SH = 12

subject
to the 

constraints

   − (25/6) SC − (85/8) SH + SM = 110

A , B ,           SC ,           SH , SM ≥ 0

pivot

substitute A = (3/8) (32 + (4/15) SC – SH ) and add A into the basis
 (rewrite 3rd equation, eliminate A in 1st, 2nd, and 4th equations)

which basic variable
does A replace?
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Simplex algorithm: optimality

Q.  When to stop pivoting?
A.  When no objective function coefficient is positive.

Q.  Why is resulting solution optimal?
A.  Any feasible solution satisfies current system of equations.

• In particular:  Z = 800 – SC – 2 SH

• Thus, optimal objective value Z*  ≤  800 since  SC ,  SH   ≥  0.

• Current BFS has value 800  ⇒  optimal.

basis = { A, B, SM }
SC = SH = 0

Z = 800
B = 28 
A = 12 

SM = 110

maximize Z

subject
to the 

constraints

−            SC −         2 SH − Z = -800

subject
to the 

constraints

 B +  (1/10) SC +   (1/8) SH = 28subject
to the 

constraints  A   − (1/10) SC +   (3/8) SH = 12

subject
to the 

constraints

   − (25/6) SC − (85/8) SH + SM = 110

A , B ,           SC ,           SH , SM ≥ 0
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‣ brewer’s problem
‣ simplex algorithm
‣ implementations
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Encode standard form LP in a single Java 2D array.

Simplex tableau

26

m

1

n m 1

maximize Z

subject
to the 

constraints

13A + 23B − Z = 0

subject
to the 

constraints

  5A + 15B + SC = 480subject
to the 

constraints   4A +   4B + SH = 160

subject
to the 

constraints

35A + 20B + SM = 1190

   A ,    B , SC , SH , SM ≥ 0

initial simplex tableaux

5 15 1 0 0 480

4 4 0 1 0 160

35 20 0 0 1 1190

13 23 0 0 0 0

A I b

c 0 0



Simplex algorithm transforms initial 2D array into solution.

Simplex tableau
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maximize Z

subject
to the 

constraints

−            SC −       2 SH − Z = -800

subject
to the 

constraints

 B + (1/10) SC +  (1/8) SH = 28subject
to the 

constraints  A   − (1/10) SC +  (3/8) SH = 12

subject
to the 

constraints

   − (25/6) SC − (85/8) SH + SM = 110

A , B ,           SC ,           SH , SM ≥ 0

0 1 1/10 1/8 0 28

1 0 -1/10 3/8 0 12

0 0 -25/6 -85/8 1 110

0 0 -1 -2 0 -800

m

1

n m 1

≤ 0 ≤ 0 -Z*

final simplex tableaux
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Simplex algorithm: initial simplex tableaux

Construct the initial simplex tableau.

public class Simplex
{
   private double[][] a;   // simplex tableaux
   private int m, n;       // M constraints, N variables

   public Simplex(double[][] A, double[] b, double[] c)
   {
      m = b.length;
      n = c.length;
      a = new double[m+1][m+n+1];
      for (int i = 0; i < m; i++)
         for (int j = 0; j < n; j++)
            a[i][j] = A[i][j];
      for (int j = n; j < m + n; j++) a[j-n][j] = 1.0;
      for (int j = 0; j < n;     j++) a[m][j]   = c[j];
      for (int i = 0; i < m;     i++) a[i][m+n] = b[i];
   }

put A[][] into tableau

put I[][] into tableau

put c[] into tableau

put b[] into tableau

constructor

m

1

n m 1

A I b

c 0 0



Find entering column q using Bland's rule:
index of first column whose objective function
coefficient is positive.

private int bland()
{   
   for (int q = 0; q < m + n; q++)
      if (a[m][j] > 0) return q;

   return -1;
}
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Simplex algorithm: Bland's rule

p

q

entering column q has positive 
objective function coefficient

optimal

m

m+n

0
0

+

+



Find leaving row p using min ratio rule.
(Bland's rule: if a tie, choose first such row)

private int minRatioRule(int q)
{   
   int p = -1;
   for (int i = 0; i < m; i++)
   {
      if (a[i][q] <= 0) continue;
      else if (p == -1) p = i;
      else if (a[i][m+n] / a[i][q] < a[p][m+n] / a[p][q])
         p = i;
   }
   return p;
}
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Simplex algorithm: min-ratio rule

p

q

leaving row

consider only 
positive entries

row p has min 
ratio so far

m

m+n

0
0

+

+



Pivot on element row p, column q.

public void pivot(int p, int q)
{
   for (int i = 0; i <= m; i++)
      for (int j = 0; j <= m+n; j++)
         if (i != p && j != q)
            a[i][j] -= a[p][j] * a[i][q] / a[p][q];
 
   for (int i = 0; i <= m; i++)
      if (i != p) a[i][q] = 0.0;

   for (int j = 0; j <= m+n; j++) 
      if (j != q) a[p][j] /= a[p][q];
   a[p][q] = 1.0;
}

31

Simplex algorithm: pivot

p

q

scale all entries but
row p and column q

zero out column q

scale row p

m

m+n

0
0

+

+



Execute the simplex algorithm.

public void solve()
{
   while (true)
   {
      int q = bland();
      if (q == -1) break;

      int p = minRatioRule(q);
      if (p == -1) ...
      
      pivot(p, q);
   }
}
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Simplex algorithm: bare-bones implementation

p

q

pivot on row p, column q

m

m+n

0
0

+

leaving row p (unbounded if -1)

entering column q (optimal if -1)

+



Remarkable property.  In typical practical applications, simplex algorithm 
terminates after at most 2 (m + n) pivots.

• No pivot rule is known that is guaranteed to be polynomial.

• Most pivot rules are known to be exponential (or worse) in worst-case.

Pivoting rules.  Carefully balance the cost of finding an entering variable with  
the number of pivots needed.

33

Simplex algorithm: running time

Smoothed Analysis of Algorithms: Why the Simplex
Algorithm Usually Takes Polynomial Time

Daniel A. Spielman
Department of Mathematics

M.I.T.
Cambridge, MA 02139

spielman@mit.edu

Shang-Hua Teng
Akamai Technologies Inc. and

Department of Computer Science
University of Illinois at Urbana-Champaign

steng@cs.uiuc.edu

ABSTRACT

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’01, July 6-8, 2001, Hersonissos, Crete, Greece.
Copyright 2001 ACM 1-58113-349-9/01/0007 ... 5.00.

1.1 Background

296
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Simplex algorithm: degeneracy

Degeneracy.  New basis, same extreme point.

Cycling.  Get stuck by cycling through different bases that all correspond
to same extreme point.

• Doesn't occur in the wild.

• Bland's rule guarantees finite # of pivots.

"stalling" is common in practice

choose lowest valid index for
entering and leaving columns



To improve the bare-bones implementation.

• Avoid stalling.

• Maintain sparsity.

• Numerical stability.

• Detect infeasibility.

• Detect unboundedness.

Best practice.  Don't implement it yourself!

Basic implementations.  Available in many programming environments.
Industrial-strength solvers.  Routinely solve LPs with millions of variables.
Modeling languages.  Simplify task of modeling problem as LP.

requires fancy data structures

35

Simplex algorithm: implementation issues

requires advanced math

run "phase I" simplex algorithm

no leaving row

requires artful engineering



Ex 1.  OR-Objects Java library solves linear programs in Java.
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LP solvers: basic implementations

http://or-objects.org/app/library

import drasys.or.mp.Problem; 
import drasys.or.mp.lp.DenseSimplex; 

public class Brewer
{ 
   public static void main(String[] args) throws Exception
   {
      Problem problem = new Problem(3, 2);
      problem.getMetadata().put("lp.isMaximize", "true");
      problem.newVariable("x1").setObjectiveCoefficient(13.0);
      problem.newVariable("x2").setObjectiveCoefficient(23.0);
      problem.newConstraint("corn").setRightHandSide( 480.0);
      problem.newConstraint("hops").setRightHandSide( 160.0);
      problem.newConstraint("malt").setRightHandSide(1190.0);
        
      problem.setCoefficientAt("corn", "x1",  5.0);
      problem.setCoefficientAt("corn", "x2", 15.0);
      problem.setCoefficientAt("hops", "x1",  4.0);
      problem.setCoefficientAt("hops", "x2",  4.0);
      problem.setCoefficientAt("malt", "x1", 35.0);
      problem.setCoefficientAt("malt", "x2", 20.0);
 
      DenseSimplex lp = new DenseSimplex(problem);
      StdOut.println(lp.solve());
      StdOut.println(lp.getSolution());
   }
}



Ex 2.  QSopt solves linear programs in Java or C.
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LP solvers: basic implementations

http://www2.isye.gatech.edu/~wcook/qsopt

import qs.*;

public class QSoptSolver {
   public static void main(String[] args) {
      Problem problem = Problem.read(args[0], false);
      problem.opt_primal();
      StdOut.println("Optimal value = " + problem.get_objval());
      StdOut.println("Optimal primal solution: ");
      problem.print_x(new Reporter(System.out), true, 6);
   }     
}

% more beer.lp
Problem 
   Beer
Maximize 
  profit: 13A + 23B
Subject 
    corn:  5A + 15B <=  480.0
    hops:  4A +  4B <=  160.0
    malt: 35A + 20B <= 1190.0
End

% java -cp .:qsopt.jar QSoptSolver beer.lp
Optimal profit = 800.0
Optimal primal solution: 
  A = 12.000000
  B = 28.000000

problem in LP or MPS format



Ex 3.  Microsoft Excel Solver add-in solves linear programs.
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LP solvers: basic implementations

sorry, no longer
support on Mac



Ex 4.  Matlab command linprog in optimization toolbox solves LPs.
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LP solvers: basic implementations

>> A = [5 15; 4 4; 35 20];
>> b = [480; 160; 1190];
>> c = [13; 23];

>> lb = [0; 0];
>> ub = [inf; inf];
>> x = linprog(-c, A, b, [], [], lb, ub)
x =
    12.0000
    28.0000
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LP solvers: industrial strength

AMPL.  [Fourer, Gay, Kernighan]  An algebraic modeling language.

• Separates data from the model.

• Symbolic names for variables.

• Mathematical notation for constraints.

CPLEX solver. [Bixby]  Highly optimized
and robust industrial-strength solver.

% more beer.mod
set INGR;
set PROD;
param profit {PROD};
param supply {INGR};
param amt {INGR, PROD};
var x {PROD} >= 0;

maximize total_profit:
   sum {j in PROD} x[j] * profit[j];

subject to constraints {i in INGR}:
   sum {j in PROD}
      amt[i,j] * x[j] <= supply[i];

% more beer.dat
set PROD := beer ale;
set INGR := corn hops malt;

param: profit :=
ale  13
beer 23;

param: supply :=
corn  480
hops  160
malt 1190;

param amt: ale beer :=
corn         5  15
hops         4   4
malt        35  20;

[wayne:tombstone] ~> ampl
ILOG AMPL 9.100
AMPL Version 20021038 (SunOS 5.8)
ampl: model beer.mod;
ampl: data beer.dat;
ampl: solve;
ILOG CPLEX 9.100 
CPLEX 9.1.0: optimal solution; objective 800
2 dual simplex iterations (1 in phase I)
ampl: display x;
x [*] :=  ale 12  beer 28  ;

but license costs $$$
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LP solvers: industrial strength

“  a benchmark production planning model solved using linear programming would have

    taken 82 years to solve in 1988, using the computers and the linear programming

    algorithms of the day. Fifteen years later—in 2003—this same model could be solved

    in roughly 1 minute, an improvement by a factor of roughly 43 million. Of this, a factor

    of roughly 1,000 was due to increased processor speed, whereas a factor of roughly

    43,000 was due to improvements in algorithms! ”

           —   Designing a Digital Future

                 ( Report to the President and Congress, 2010 )

speedup  =  speedup due to big iron  ×  speedup due to better algorithms  
43 million 1,000 43,000
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LP duality:  economic interpretation

Brewer's problem.  Find optimal mix of beer and ale to maximize profits.

Entrepreneur's problem.  Buy resources from brewer to minimize cost.

• C,  H,  M  =  unit prices for corn, hops, malt.

• Brewer won't agree to sell resources if  5C  +  4H  +  35M   <   13

                                                      or if 15C  +  4H  +  20M   <   23

A* = 12
B* = 28 

OPT = 800

C* = 1
H* = 2 
M* = 0

OPT = 800

maximize 13A + 23B

subject
to the 

constraints

  5A + 15B ≤ 480subject
to the 

constraints
  4A +   4B ≤ 160

subject
to the 

constraints 35A + 20B ≤ 1190

    A ,     B ≥ 0

minimize 480C + 160H + 1190M

subject
to the 

constraints

   5C +     4H +     35M ≥ 13subject
to the 

constraints
 15C +     4H +     20M ≥ 23

subject
to the 

constraints      C ,       H +         M ≥ 0

coincidence?



Q.  How much should brewer be willing to pay (marginal price) for additional 
supplies of scarce resources?
A.  Corn $1, hops $2, malt $0.

Q.  How do I compute marginal prices?
A1.  Entrepreneur's problem is another linear program.
A2.  Simplex algorithm solves both brewer's and entrepreneur's problems!

maximize Z

subject
to the 

constraints

−  SC −          2SH − Z = -800

subject
to the 

constraints

 B + (1/10) SC +   (1/8) SH = 28subject
to the 

constraints  A   − (1/10) SC +   (3/8) SH = 12

subject
to the 

constraints

   − (25/6) SC − (85/8) SH + SM = 110

A,  B,  SC,  SH,  SMA,  B,  SC,  SH,  SMA,  B,  SC,  SH,  SMA,  B,  SC,  SH,  SMA,  B,  SC,  SH,  SMA,  B,  SC,  SH,  SMA,  B,  SC,  SH,  SMA,  B,  SC,  SH,  SMA,  B,  SC,  SH,  SM ≥ 0
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LP duality:  sensitivity analysis
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LP duality theorem

Goal.  Given real numbers aij, cj, bi, find real numbers xj and yi that solve:

Proposition.  If (P) and (D) have feasible solutions, then max = min.

primal problem (P) dual problem (D)

max c1 x1 + c2 x2 +  …  + cn xn

subject
to

  a11 x1 +   a12 x2 +  …  +   a1n xn = b1

subject
to

  a21 x1 +   a22 x2 +  …  +   a2n xn = b2

subject
to       ⋮        ⋮  ⋮        ⋮    ⋮

subject
to

  am1 x1 +   am2 x2 +  …  +   amn xn = bm

  x1 ,   x2 ,  …  ,    xn ≥ 0

min b1 y1 + b2 y2 +  …  + bm ym

subject
to

  a11 y1 +   a21 y2 +  …  +   an1 ym = c1

subject
to

  a12 y1 +   a22 y2 +  …  +   an2 ym = c2subject
to

      ⋮        ⋮  ⋮        ⋮    ⋮

subject
to

  a1n y1 +   a2n y2 +  …  +   anm ym = cn

  y1 ,   y2 ,  …  ,    ym ≥ 0



46

LP duality theorem

Goal.  Given a matrix A and vectors b and c, find vectors x and y that solve:

Proposition.  If (P) and (D) have feasible solutions, then max = min.

maximize     cT x  

subject
to the 

constraints

A x  =  bsubject
to the 

constraints    x  ≥  0

minimize      bT y  

subject
to the 

constraints

AT y  ≥  csubject
to the 

constraints    y  ≥  0

primal problem (P) dual problem (D)
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Brief history

1939.  Production, planning.  [Kantorovich]
1947.  Simplex algorithm.  [Dantzig]
1947.  Duality.  [von Neumann, Dantzig, Gale-Kuhn-Tucker]
1947.  Equilibrium theory.  [Koopmans]
1948.  Berlin airlift.  [Dantzig]
1975.  Nobel Prize in Economics. [Kantorovich and Koopmans]
1979.  Ellipsoid algorithm.  [Khachiyan]
1984.  Projective-scaling algorithm.  [Karmarkar]
1990.  Interior-point methods. [Nesterov-Nemirovskii, Mehorta, ...]

George Dantzig von Neumann Khachiyan KarmarkarKantorovich Koopmans
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‣ brewer’s problem
‣ simplex algorithm
‣ implementations
‣ duality
‣ modeling



Linear “programming.” 

• Process of formulating an LP model for a problem.

• Solution to LP for a specific problem gives solution to the problem.

1. Identify variables.
2. Define constraints (inequalities and equations).
3. Define objective function.
4. Convert to standard form.

Examples.

• Shortest paths.

• Maxflow.

• Bipartite matching.

• Assignment problem.

• 2-person zero-sum games.
...

Modeling

49

software usually performs
this step automatically
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Maxflow problem (revisited)

Input. Weighted digraph G, single source s and single sink t.
Goal.  Find maximum flow from s to t.

 

Example of reducing network !ow to linear programming

LP solution

max!ow problem max!ow solution

LP formulation

capacities

6 
8
0 1  2.0
0 2  3.0
1 3  3.0
1 4  1.0
2 3  1.0
2 4  1.0
3 5  2.0
4 5  3.0

V
E

0  ! x 01 ! 2
0  ! x 02 ! 3
0  ! x 13 ! 3
0  ! x 14 ! 1
0  ! x 23 ! 1
0  ! x 24 ! 1
0  ! x 35 ! 2
0  ! x 45 ! 3

x 01 = x 13 + x 14 

x 02 = x 23 + x 24 

x 13 + x 23 = x 35 

x 14 + x 24 = x 45 

Maximize x 35 + x 45
subject to the constraints

x 01 =  2
x 02 =  2
x 13 =  1
x 14 =  1
x 23 =  1
x 24 =  1
x 35 =  2
x 45 =  2

Max flow from 0 to 5

  0->2 3.0 2.0

  0->1 2.0 2.0

  1->4 1.0 1.0

  1->3 3.0 1.0

  2->3 1.0 1.0

  2->4 1.0 1.0

  3->5 2.0 2.0

  4->5 3.0 2.0

Max flow value: 4.0

Example of reducing network !ow to linear programming

LP solution

max!ow problem max!ow solution

LP formulation

capacities

6 
8
0 1  2.0
0 2  3.0
1 3  3.0
1 4  1.0
2 3  1.0
2 4  1.0
3 5  2.0
4 5  3.0

V
E

0  ! x 01 ! 2
0  ! x 02 ! 3
0  ! x 13 ! 3
0  ! x 14 ! 1
0  ! x 23 ! 1
0  ! x 24 ! 1
0  ! x 35 ! 2
0  ! x 45 ! 3

x 01 = x 13 + x 14 

x 02 = x 23 + x 24 

x 13 + x 23 = x 35 

x 14 + x 24 = x 45 

Maximize x 35 + x 45
subject to the constraints

x 01 =  2
x 02 =  2
x 13 =  1
x 14 =  1
x 23 =  1
x 24 =  1
x 35 =  2
x 45 =  2

Max flow from 0 to 5

  0->2 3.0 2.0

  0->1 2.0 2.0

  1->4 1.0 1.0

  1->3 3.0 1.0

  2->3 1.0 1.0

  2->4 1.0 1.0

  3->5 2.0 2.0

  4->5 3.0 2.0

Max flow value: 4.0
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Modeling the maxflow problem as a linear program

Variables.  xvw = flow on edge v→w.
Constraints.  Capacity and flow conservation.
Objective function.  Net flow into t.

Example of reducing network !ow to linear programming

LP solution

max!ow problem max!ow solution

LP formulation

capacities

6 
8
0 1  2.0
0 2  3.0
1 3  3.0
1 4  1.0
2 3  1.0
2 4  1.0
3 5  2.0
4 5  3.0

V
E

0  ! x 01 ! 2
0  ! x 02 ! 3
0  ! x 13 ! 3
0  ! x 14 ! 1
0  ! x 23 ! 1
0  ! x 24 ! 1
0  ! x 35 ! 2
0  ! x 45 ! 3

x 01 = x 13 + x 14 

x 02 = x 23 + x 24 

x 13 + x 23 = x 35 

x 14 + x 24 = x 45 

Maximize x 35 + x 45
subject to the constraints

x 01 =  2
x 02 =  2
x 13 =  1
x 14 =  1
x 23 =  1
x 24 =  1
x 35 =  2
x 45 =  2

Max flow from 0 to 5

  0->2 3.0 2.0

  0->1 2.0 2.0

  1->4 1.0 1.0

  1->3 3.0 1.0

  2->3 1.0 1.0

  2->4 1.0 1.0

  3->5 2.0 2.0

  4->5 3.0 2.0

Max flow value: 4.0

Example of reducing network !ow to linear programming

LP solution

max!ow problem max!ow solution

LP formulation

capacities

6 
8
0 1  2.0
0 2  3.0
1 3  3.0
1 4  1.0
2 3  1.0
2 4  1.0
3 5  2.0
4 5  3.0

V
E

0  ! x 01 ! 2
0  ! x 02 ! 3
0  ! x 13 ! 3
0  ! x 14 ! 1
0  ! x 23 ! 1
0  ! x 24 ! 1
0  ! x 35 ! 2
0  ! x 45 ! 3

x 01 = x 13 + x 14 

x 02 = x 23 + x 24 

x 13 + x 23 = x 35 

x 14 + x 24 = x 45 

Maximize x 35 + x 45
subject to the constraints

x 01 =  2
x 02 =  2
x 13 =  1
x 14 =  1
x 23 =  1
x 24 =  1
x 35 =  2
x 45 =  2

Max flow from 0 to 5

  0->2 3.0 2.0

  0->1 2.0 2.0

  1->4 1.0 1.0

  1->3 3.0 1.0

  2->3 1.0 1.0

  2->4 1.0 1.0

  3->5 2.0 2.0

  4->5 3.0 2.0

Max flow value: 4.0

Example of reducing network !ow to linear programming

LP solution

max!ow problem max!ow solution

LP formulation

capacities

6 
8
0 1  2.0
0 2  3.0
1 3  3.0
1 4  1.0
2 3  1.0
2 4  1.0
3 5  2.0
4 5  3.0

V
E

0  ! x 01 ! 2
0  ! x 02 ! 3
0  ! x 13 ! 3
0  ! x 14 ! 1
0  ! x 23 ! 1
0  ! x 24 ! 1
0  ! x 35 ! 2
0  ! x 45 ! 3

x 01 = x 13 + x 14 

x 02 = x 23 + x 24 

x 13 + x 23 = x 35 

x 14 + x 24 = x 45 

Maximize x 35 + x 45
subject to the constraints

x 01 =  2
x 02 =  2
x 13 =  1
x 14 =  1
x 23 =  1
x 24 =  1
x 35 =  2
x 45 =  2

Max flow from 0 to 5

  0->2 3.0 2.0

  0->1 2.0 2.0

  1->4 1.0 1.0

  1->3 3.0 1.0

  2->3 1.0 1.0

  2->4 1.0 1.0

  3->5 2.0 2.0

  4->5 3.0 2.0

Max flow value: 4.0

flow conservation
constraints

capacity constraints
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Linear programming dual of maxflow problem

Dual variables.  One variable zvw for each edge and one variable yv for each vertex.
Dual constraints.  One inequality for each edge.
Objective function.  Capacity of edges in cut.

Interpretation.  LP dual of maxflow problem is mincut problem!

• yv = 1 if v is on s side of min cut; yv = 0 if on t side.

• zvw = 1 if v→w crosses cut.

minimize  2z01 + 3z02 + 3z13 + z14 + z23 + z24 + 2z35 + 3z45 2z01 + 3z02 + 3z13 + z14 + z23 + z24 + 2z35 + 3z45 2z01 + 3z02 + 3z13 + z14 + z23 + z24 + 2z35 + 3z45 2z01 + 3z02 + 3z13 + z14 + z23 + z24 + 2z35 + 3z45 2z01 + 3z02 + 3z13 + z14 + z23 + z24 + 2z35 + 3z45 2z01 + 3z02 + 3z13 + z14 + z23 + z24 + 2z35 + 3z45 2z01 + 3z02 + 3z13 + z14 + z23 + z24 + 2z35 + 3z45 2z01 + 3z02 + 3z13 + z14 + z23 + z24 + 2z35 + 3z45

subject
to the 

constraints

z01 ≥ y0  –  y1 z23 ≥ y2  –  y3
subject
to the 

constraints
z02 ≥ y0  –  y2 z24 ≥ y2  –  y4

subject
to the 

constraints
z13 ≥ y1  –  y3 z35 ≥ y3  –  y5

z14 ≥ y1  –  y4 z45 ≥ y4  –  y5

y0  = 1 y5  = 0

yv   unrestricted unrestricted unrestricted zvw ≥ 0 sinksource

if yv = 1 and yw = 0,
then zvw = 1

extreme point solution will be 0/1
(not always so lucky!)



Q.  Got an optimization problem?
Ex.  Shortest paths, maxflow, matching, …  [many, many, more]

Approach 1:  Use a specialized algorithm to solve it.

• Algorithms 4/e.

• Vast literature on algorithms.

Approach 2:  Use linear programming.

• Many problems are easily modeled as LPs.

• Commercial solvers can solve those LPs quickly.

• Might be slower than specialized solution (but might not care).

Got an LP solver? Learn to use it!

Linear programming perspective
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Is there a universal problem-solving model?

• Shortest paths.

• Maxflow.

• Bipartite matching.

• Assignment problem.

• Multicommodity flow.
…

• Two-person zero-sum games.

• Linear programming.
…

• Factoring

• NP-complete problems. 
…

Does P = NP?   No universal problem-solving model exists unless P = NP.
54

tractable

Universal problem-solving model (in theory)

see next lecture

intractable ?


