
Types for Relaxed Memory Models

Matthew Goto Radha Jagadeesan Corin Pitcher James Riely
DePaul University

Abstract
Multicore computers implementing weak memory models are
mainstream, yet type-based analyses of these models remain rare.
We help fill this gap. We not only prove the soundness of a type sys-
tem for a weak execution model, but we also show that interesting
properties of that model can be embedded in the types themselves.

We argue that correspondence assertions can be used in a pro-
gramming discipline that captures happens-before relationships,
which are the basis for reasoning about weak memory in Java. This
programming discipline is flexible and can be statically enforced.
We present several examples from java.util.concurrent and
prove the static semantics sound with respect to an execution model
based on Java’s memory model.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Theory, Languages

1. Introduction
The C++ memory model posits that programs with data races
have undefined semantics [Boehm and Adve 2008]. This model
is incompatible with languages such as Java, which allow data
races but seek to ensure safety. The Java Memory Model (JMM)
[Manson, Pugh, and Adve 2005] is a speculative model intended
to validate the executions generated by modern processors and
compilers while banning thin-air reads, and thus to ensuring type
safety. To our knowledge, the safety argument has only been made
informally.

The happens-before relation is crucial to understanding shared-
memory concurrent Java programs. The Java APIs contain exten-
sive comments describing the happens-before relation, such as the
following: “Actions in a thread prior to placing an object into any
concurrent collection happen-before actions subsequent to the ac-
cess or removal of that element from the collection in another
thread.” There is no method for describing happens-before relations
formally.

Consider the following tiny example, which shows that, with-
out proper synchronization, it is possible for a thread to read stale
values. We adopt the following notational conventions: s and t are
thread identifiers; p is an object identifier; the process s[M] de-
notes a thread with identifier s, executing statement M; the process
A|B denotes the parallel composition of threads A and B.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
TLDI’12, January 28, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1120-5/12/01. . . $10.00

class C1 { int f; int g; }
s[p.f=42; p.g=27;] |
t[val y=p.g; val x=p.f; if((y!=0)&&(x==0)){†}]

There are two threads sharing object p inhabiting class C1 (notation
p :C1). All fields are initially set to 0. Object p has two fields.
Thread s updates p.f then p.g. Thread t reads the fields in the
reverse order. Because there is no synchronization, the program has
data races on both fields.

In a sequentially consistent execution [Lamport 1979], threads
must appear to execute sequentially in an interleaved fashion. Since
s must write p.f before p.g, it is impossible for t to read an object
from p.g and subsequently read 0 from p.f; thus the statement †
is unreachable in a sequentially consistent semantics.

However, compilers may re-order unrelated writes and reads,
and thus the JMM semantics is designed to allow executions in
which † is reachable in example C1.

Synchronization eliminates data races, shrinking the set of vis-
ible values. For example, in the following variant of example C1,
field g is declared as volatile. There are happens-before edges
from a write of a volatile to every subsequent read. Assume p :C2.

class C2 { int f; volatile int g; }
s[p.f=42; p.g=27;] |
t[val y=p.g; val x=p.f; if((y!=0)&&(x==0)){†}]

Because of the synchronization though p.g, † becomes unreach-
able in the JMM for C2. Such happens-before reasoning is subtle:
in the variant where f is volatile but g is not, † is reachable. The
reasoning may also fail in the presence of other threads.

In this paper we propose a a compositional program disci-
pline for happens-before using correspondence assertions [Woo
and Lam 1992; Gordon and Jeffrey 2003]. As a byproduct, we
present a proof of type safety for concurrent Java.

Organization. In Section 2, we sketch the semantics of our mem-
ory model and present correspondence assertions as a tool for rea-
soning about happens-before relations. Section 3 is a brief detour
to complete the description of the semantics; we introduce specula-
tion and describe its implications for type soundness. In Section 4,
we provide intuitions about the type system via examples. For read-
ability, Sections 1–4 sometimes use Java syntax. For simplicity of
formal development, the remainder of the paper uses a more restric-
tive language.

In Section 5, we define the static type system, which is used to
validate class definitions. In Section 6, we define soundness using
an operational semantics. In Section 7, we describe the soundness
proof, highlighting the most interesting cases of the inductive in-
variant maintained by the operational semantics. In Section 8, we
summarize related work and conclude.

Details of the soundness proof, including the typing rules for
processes used in subject reduction, are available in the full version
of the paper.

Acknowledgements. We gratefully acknowledge the detailed
comments of the anonymous referees on this and a previous version
of the paper. This research was supported by NSF grant #0916741.

2. Happens-before semantics using correspon-
dence assertions

We provide a rough introduction to our operational semantics and
describe how correspondence assertions can be integrated to reason
about happens-before relations. The semantics is essentially copied
from our previous paper [Jagadeesan, Pitcher, and Riely 2010],
although it has been adapted to handle atomics.

The semantics is based on the idea that writes do not affect a tra-
ditional store, but rather produce actions. When a read occurs, the
resulting value can be determined by the visible writes. Reduction
relates processes, which are snapshots of a running system. As a
first approximation, one can view a process as a collection of object
denotations and threads, surrounded by a sequence of actions. Con-
sider the following reductions using class Int {int f;}, where
p:Int.

p:Int | s[p.f=42; p.f=27;] | t[val x=p.f;]
→ 〈s!p.f=42〉(p:Int | s[p.f=27;] | t[val x=p.f;])

→ 〈s!p.f=42〉〈s!p.f=27〉(p:Int | s[] | t[val x=p.f;])

After the first reduction, t can read 42. After the second reduction,
t can read either 42 or 27. The read operation is nondeterministic
in the latter case.

Java does not have thread or object literals, and so writing Java
programs to generate such processes is a bit of a chore. In this case,
we must write initialization code that creates the shared object and
the threads:

class S { Int p; S(Int p) {this.p=p;}
void run() {p.f=42; p.f=27;}

}
class T { Int p; T(Int p) {this.p=p;}

void run() {val x=p.f} // using untyped declarations
}
class Main {

static void main() {
val p = new Int();
new S(p).start();
new T(p).start();

} }

For expository purposes, we consistently elide this bootstrap code,
looking instead at a literal expression of the resulting process.

Once running, a process context defines a sequence of actions
(those leading up to the context hole) and a happens-before relation
over that sequence. For example, if

C= 〈s!p.f=42〉〈s!p.f=27〉(p:Int | J–K)

then there are two write actions in the sequence, with 〈s!p.f=42〉
happening-before 〈s!p.f=27〉. The same context can provide dif-
ferent values to different threads. For example, C justifies reading
either 42 or 27 from p.f for thread t; whereas C can only justify
reading 27 from p.f for thread s. We formalize this by adding an
action for the context hole, labeled by the identifier of the thread
within the hole that is attempting to read.

The sequence of actions from a single thread defines program
order. The sequence of actions on a single synchronization variable
defines synchronization order. Happens-before is defined to be the
transitive closure of program order and synchronization order. A
write action is available to a read unless it happens-before another
write action that in turn happens-before the read; the “other” write
intervenes between the first write and the read, hiding the first write.

We discuss synchronization order using Java’s atomic objects,
rather than volatiles. A volatile field can be viewed as a final atomic
upon which we only call get and set. In addition, atomics have
get-and-set and compare-and-swap methods, which can be used to
implement locks.

Synchronization order specifies that a “set” on an atomic hap-
pens-before any subsequent “get.” We model this using synchro-
nization actions of the form 〈`!s: j〉, where ` the atomic object
acted upon, s is the acting thread, and j is an opcount. If the op-
count is odd, then the operation was a set. If the opcount is even,
then the operation was a get. The opcount is incremented when a
set follows a get or a get follows a set. Initially, atomics are “set”
with opcount 1.

Reading an atomic is deterministic; thus we store the value held
by an atomic with its denotation, rather than representing it using
actions. The form of an atomic denotation is Atomic{v; j}, where
v is the current value and j is the opcount.

Consider the following variant of example C2 from the intro-
duction.

p:Int | l:Atomic{0;1} |
s[p.f=42; l.set(27);] |
t[val y=l.get(); val x=p.f; if((x==0)&&(y!=0)){†}]

Just as for example C1, statement † is unreachable. For example,
consider the case where thread s executes before t. In this case, the
read of p.f occurs in the following context.

〈s!p.f=42〉〈s!l:1〉〈t!l:2〉
(p:Int | l:Atomic{27;2} | s[] | J–K)

The synchronization action 〈s!l:1〉was created when s performed
l.set(27); this operation modified the value of the atomic, but
not its opcount, resulting in l:Atomic{27;1}. The next synchro-
nization action, 〈t!l:2〉, was created when t performed l.get();
this operation modified the opcount of the atomic, but not its value,
resulting in l:Atomic{27;2}. Note that synchronization actions
record the opcount, whereas write actions, such as 〈s!p.f=42〉,
record the value written.

The above context has three happens-before edges, when inter-
preted as a context for t.
• program order from 〈s!p.f=42〉 to 〈s!l:1〉,
• synchronization order from 〈s!l:1〉 to 〈t!l:2〉, and
• program order from 〈t!l:2〉 to the hole.

Happens-before is also affected by thread creation. For exam-
ple, the bootstrap code given above will evaluate to the following
context, holding process s[· · ·] |t[· · ·].

(νm)(νp)(νs)(νt)
〈m!p.f=0〉〈m!l:1〉〈m!k:1〉〈s!l:2〉〈t!k:2〉

(m:Main | p:Int | s:S | t:T | J–K)

Given the semantics of start, there are synchronization edges
from m to the threads that it creates, here manifest in the synchro-
nization variables l and k, which will never be used again. Because
of these synchronization edges, the write of the initial value of p.f
happens-before any actions performed by s or t, since these threads
are part of the process filling the hole in the context.

Many concurrent algorithms use locks. When locks are imple-
mented using atomics, the release of a lock happens-before the sub-
sequent acquire.

In this paper we reason about happens-before relations using
correspondence assertions [Woo and Lam 1992; Gordon and Jef-
frey 2003]. Using this technique, a programmer may annotate a
program with begin and end statements. The execution of an end
statement is correct if it occurs after the corresponding begin. The
primary goal of static analysis is to ensure that all ends are correct.

In a well-typed program, therefore, end statements can be erased
without changing the meaning of the program.

Correspondences have no computational effect. The particular
form of correspondence is chosen in order to specify some property
of interest. We wish to reason about happens-before relations in
code built using atomics and other mechanisms, and we wish to do
so in a way that might be useful for API documentation.

Recall the example from java.util.concurrent quoted in
the introduction: “Actions in a thread prior to placing an object
into any concurrent collection happen-before actions subsequent to
the access or removal of that element from the collection in an-
other thread.” Directly capturing such statements requires depen-
dent types, as well as a selection of analyses based on locality
[Sewell 1998], confinement [Zhao, Palsberg, and Vitek 2006], lin-
earity [Hawblitzel 2005], and effects [Lucassen and Gifford 1988].
Such powerful type systems provide strong guarantees at the cost
of additional programmer effort that we do not wish to mandate.

Our goal has been to develop a type system that captures
some property of happens-before while retaining simple types. To
achieve this, we propose a rather weak notion of correspondence.

In our minimalist approach, the creation of an object p by a
thread s begins a correspondence, creating a begin action 〈s!p〉.
At any point, a program can attempt to end the correspondence
using the statement end p. If 〈s!p〉 happens-before the hole in the
context where end p occurs, then we say that this occurrence of
p is correctly published, and the end acts as a no-op; otherwise the
thread becomes stuck. For example, consider the following process.

〈s!p〉 (s[end p; · · ·] | t[end p; · · ·])

Thread s evaluates to s[· · ·] whereas thread t is stuck: the begin
in context 〈s!p〉 J–K only happens-before the hole when the hole is
filled by s. A stuck program is erroneous; typing ensures that well-
typed programs cannot get stuck.

This form of specification is weak in the sense that a program-
mer cannot choose the point at which a begin occurs; begins always
coincide with object creation. The programmer is also restricted to
end on a single object reference, not a tuple.

Additionally, Java allows the null value wherever an object
reference can occur, and we make no attempt to countermand this
design decision. As in FJ [Igarashi, Pierce, and Wadler 2001], the
definition of stuckness is tuned to the power of the type system,
which cannot prevent null or casting errors. By definition, null
errors and casting errors do not cause a stuck thread, simply an
irreducible one. Stuckness is precisely defined in Section 6.2.

Nonetheless, our correspondences can be used to associate ar-
bitrary program points by creating a dummy object to denote the
begin statement, communicating that object, and then performed an
end using the received value. The correspondence is only meaning-
ful, however, if the received value is that which is expected. Since
begins are performed on every object, we have factored out any data
dependencies and therefore removed the need for dependent types.

To understand a concurrent data structure, one must understand
both the data structure invariants and the memory effects. Our cor-
respondence should be read as capturing the necessary memory ef-
fects under the supposition that the (informal) data structure invari-
ants hold.

In general, shared fields do not preserve safety; that is, a thread
may get stuck if it performs an end on a value read from a shared
field, even if the writer could have performed the end. For example,
consider the following process.

〈s!o〉 〈s!p.f=o〉 (s[end o;] | t[val x=p.f; end x;])

Thread s has created and written o. The residual s[end o;] is safe,
reducing to s[]; however the residual t[end o;] is stuck.

Atomics do preserve safety. Consider the following program,
derived from the previous one by replacing p.f with atomic l.

〈s!o〉 〈s!l:1〉 (l:Atomic{o;1} |
s[end o;] | t[val x=l.get(); end x;])

In this case, the residual t[end o;] is executed in the context

〈s!o〉 〈s!l:1〉 〈t!l:2〉 J–K
and therefore is not stuck.

Example C1 from the introduction can be rewritten to use cor-
respondences as follows, where p :C1’

class C1’ { Object f; Object g; }
s[p.f=new Object(); p.g=new Object();] |
t[val y=p.g; val x=p.f;

if(y!=null){end y; if(x==null){†}}]

In C1’, the end assertion can get stuck, since there is no happens-
before edge from s to t.

Example C2 can also be written in this form, where p :C2’

class C2’ { Object f; final Atomic g; }
s[p.f=new Object(); p.g.set(new Object()));] |
t[val y=p.g.get(); val x=p.f;

if(y!=null){end y; if(x==null){†}}]

In C2’, the end assertion cannot get stuck, and statement † is
unreachable. If the reads of t occur in the reverse order, then t
could become stuck and statement † could be unreachable.

3. Speculation
A substantial technical hurdle in proving soundness of any type
system for the JMM is the treatment of speculation. We first describe
our semantics for speculation, then discuss the implications for the
proof. See our previous paper [Jagadeesan, Pitcher, and Riely 2010]
for details.

While the JMM is clearly designed with type safety in mind, it
does not lend itself to standard proofs using subject reduction. The
JMM validates an execution using a sequence of commitments and
a corresponding sequence of validating executions: a commitment
C is a set of actions resolving some read-write data races; in a
sequence of valid executions, execution Ei must justify Ci using
Ci−1, subject to various coherence criteria. The coherence criteria
for the JMM are notoriously subtle, and various revisions have
been proposed [Cenciarelli, Knapp, and Sibilio 2007; Sevcík and
Aspinall 2008; Sevcík 2008]. These coherence criteria complicate
the normal inductive argument for soundness, perhaps accounting
for the fact that no soundness proof has been published as yet (to
the best of our knowledge).

For our soundness proof, we adopt the semantics proposed in
our previous work, which handles speculation quite differently.
Our semantics allows every execution allowed by the JMM, with
the exception of some programs that contain both synchronization
actions and data races. As a result of these subtle differences, our
semantics validates many common program transformations that
the JMM was meant to validate, but does not.

In addition to the mechanisms present in the previous section
for fields and atomics, the semantics allows single threaded action
rewriting and speculation.

Single threaded action rewriting is easy to understand. We al-
low dynamic transformations to the action sequence generated by
a single thread, as long as this does not introduce new behaviors.
For example, it is permitted to rewrite 〈s!p.f=42〉〈s!p.f=27〉 to
〈s!p.f=27〉, removing the value 42, which may be visible to con-
current threads. The converse transformation is not sound, however,
since it introduces the value 42 out of thin-air.

Speculation is far more subtle. Let “↑x” stand for return x in
the following example.

s[val x=p.g; p.f=27; ↑x] | t[val y=p.f; p.g=y;]

In any sequentially consistent execution, s must read the initial
value 0 from p.g, resulting in s[↑0]. A speculative semantics also
allows the result s[↑27]. In an implementation, such an execution
may be the result of cache effects or optimizations that reorder the
independent statements of s.

The basic idea of speculation is to allow s to read the value 27
from p.g before it is written by t. Clearly, we are playing with
knives. It is common to impose two sanity checks on speculation.
First, it should not create data out of “thin air”. Second, any pro-
gram without data races should only have sequentially consistent
executions. Our semantics guarantees both properties by restricting
valid speculations. We refer to our previous paper for full details,
providing only a flavor of the ideas here.

Speculation is not performed actively by a process. Rather, a
speculation happens to a process. Speculation is performed, nonde-
terministically, by the reduction relation itself. For example, let A
be the original pair of threads given above. We have the following
“reduction,” which speculates that t will write 27 to p.g.

A →
(
(>⇒ A) 8 (〈t?p.g=27〉⇒A)

)
Speculative “actions” are marked with a query (?), whereas con-
crete action are marked with a bang (!). The reduction creates two
copies of the original process, which are executed in separate uni-
verses with separate copies of the state. The left copy is called the
initial process; the right, the final process.

The initial and final processes evolve independently. Within the
final process, any thread but t can read the speculative value. This
allows reduction to the following.

>⇒ 〈s!p.f=27〉 〈t!p.g=27〉 (s[↑0] | t[])
8 〈t?p.g=27〉⇒ 〈s!p.f=27〉 〈t!p.g=27〉 (s[↑27] | t[])

Actions performed by both processes are allowed to trickle out of
the speculation, in order. In addition, object denotations and threads
can move in and out of the speculation, as long as there are identical
copies on both sides. In the case of our example, this results in

〈s!p.f=27〉 〈t!p.g=27〉
(

>⇒ (s[↑0] | t[])
8 〈t?p.g=27〉⇒ (s[↑27] | t[])

)
.

When a speculation occurs in a context with a matching concrete
write, the speculation may be removed, leaving only the final pro-
cess; the initial process is used only to justify the action that re-
moves the speculation. This is called finalization. For our running
example, the result is

〈s!p.f=27〉 〈t!p.g=27〉 (s[↑27] | t[]).

A valid execution is one in which every speculation can be
finalized; non-valid executions may create values out of thin air,
and, therefore, are not interesting. Nondeterminism ensures that the
reduction relation captures all valid executions.

The soundness theorem establishes that typed programs cannot
become stuck and therefore that every end p occurs in a context
such that, for some s, 〈s!p〉 happens-before the context hole.

Soundness only applies to valid executions. The difficulty is to
find an invariant that holds in the face of partial executions which
have no valid extension. Such partial executions are caused by
speculations which cannot be finalized, which we refer to as traps.

If a trap is the result of shape error, our type system can safely
treat the final branch as untyped: we simply “turn off” typing in
worlds that we know can never be exposed at top level.

Our type system includes effects, which formalize happens-
before relations using correspondence assertions. Thus, in addition

to shape errors, there are also subtle traps, such as speculations
that occur without a thread holding appropriate locks. Our proof
addresses this subtlety by being safely optimistic about effects: if
the optimism is justified, then it has done no harm; if the optimism
is not justified, then the speculation must be a trap. In either case,
subject reduction holds. For further discussion, see Section 7.1.

It may be argued that we should simply stop the reduction rela-
tion from generating unfinalizable speculations. In general, how-
ever, unfinalizability is undecidable. Of course, we can rule out
certain classes of speculation which are clearly unfinalizable, in-
cluding shape errors and locking errors. However, we believe that
in order to know that a speculation is unfinalizable, you must allow
the speculation to occur, and then prove that it cannot be finalized.

4. Static approximation of happens-before
Recall from Section 2 that an occurrence of an object reference is
correctly published if an end statement using that occurrence can-
not become stuck. An end statement that cannot become stuck in
any execution is safe. We introduce typing annotations to statically
approximate correct publication.

Correct publication is a predicate on occurrences of object ref-
erences, not on objects themselves: threads may have different hap-
pens-before relations to the begin action that marks the creation of
an object. A copy of a correctly published reference need not it-
self be correctly published. In particular, correct publication may
be lost when a reference is copied via a shared object. Communica-
tion using an atomics preserves correct publication, since an atomic
read is related by happens-before to every write to the same atomic.
However, communication using a non-atomic does not necessarily
preserve correct publication.

A field or variable annotated as reliable (notation �) must hold
only correctly published references. Annotations may be attached
to any field or variable, including method formal paramaters, the
implicit parameter this, and return values. The key to safely ap-
proximating correct publication in the type system is to ban read-
write data races on reliable fields. We consider three mechanisms
for doing so: final fields, atomics and lock-protected fields. We dis-
cuss these three primitives in more detail below. In the following
subsections, we discuss larger data structures using these primi-
tives.

Finals fields. Final fields have a special semantics in the JMM and
can be used to communicate correct publication. If field f is final
and reliable, then p.f is correctly published if the occurrence of p
is correctly published.

Atomics. We take Atomic to be primitive in the dynamics, and
provide it an enriched signature in the statics to indicate that it
preserves happens-before relations. We first present a simplified
version of the signature for Atomic.

class Atomic { � Object get();
void set(� Object v); ... }

In the case of get, the reliable annotation indicates that a client
program can safely end on the returned value. In the case of set, the
annotation requires that all values written to an atomic be correctly
published. This restriction may be undesirable in some cases, and
therefore we introduce polymorphism over annotations. The final
form of the atomic interface is as follows.

class Atomic〈χ〉 { χ Object get(�this;);
void set(�this;χ Object v); ... }

Here χ is an annotation variable, which may be instantiated to � or
�, indicating whether a variable is reliable. Reliable variables must
hold only correctly published values, whereas variables that are not
reliable variables may hold any value.

It is always safe to forget that a value is correctly published,
thus losing the capability to end. Annotations therefore give rise to
a natural form of subtyping with � <: χ <: �.

In general, annotations are required on the implicit parameter
this. Here the annotations indicate that correctly published values
may be recovered from a Atomic that is not itself correctly pub-
lished, that is, this is marked �.

We elide � annotations except when they occur as actual pa-
rameters to generic classes. We also elide the this annotation in
method declarations when it is �this.

To typecheck example C2’ from the end of Section 2 in our
system, we must specify that the atomic held in g is reliable. The
correct declaration of C2’ is as follows.

class C2’’ { Object f; final Atomic〈�〉 g; }
s[p.f=new Object(); p.g.set(new Object()));] |
t[val y=p.g.get(); val x=p.f;

if(y!=null){end y; if(x==null){†}}]

In this example, there are two classes of executions: those in which
t gets null from p.g, and those in which t gets the object set
by s. In the former case, the annotations on Atomic say nothing.
In the latter case, the annotations indicate that the creation of the
parameter to set happens-before the return of get. That is, hap-
pens-before relations are preserved by Atomic from a set to the
corresponding get.

Although we take Atomic to be a primitive, one can imagine
varying implementations. Implementing Atomic by simply reading
and writing a field would violate the interface given above, since
such an implementation would allow a write before a set to race
against a read after the corresponding get. However, an implemen-
tation that always returns null would satisfy the interface trivially.
More subtly, so would an implementation that created a fresh ob-
ject for each get, or always returned the first object passed to set.
In both cases, the happens-before relation that results is not the
expected one. In the former case, we have that the body of get hap-
pens-before the return of get. In the latter case, we have that the first
call to set happens-before the return of every subsequent call to get.
In short, the annotations say nothing about behavior of Atomic as
a data structure. As a data structure, Atomic requires that after the
first set, every get action returns the value from the “previous” set.
Such requirements are readily understood informally, but difficult
to formalize in a way that appeals to nonspecialists.

Our goal has been to define a typing system that captures inter-
esting properties of happens-before without commenting on data
structure invariants. Our solution is to leave the notion of “corre-
sponding actions” in the dynamics, using object identity. The re-
sulting type system can be used alone or as a module in a larger
system with additional tools to establish data structure invariants
and confinement properties. Used alone, the statics provide condi-
tional guarantees of properties of interest, such as the reachability
of statement †. If values match up and the necessary confinement
properties hold then the properties of interest can be inferred from
the happens-before relation.

Lock-protected fields. Communicating correct publication on
fields which are neither final nor atomic is rather more delicate,
as one must guarantee the absence of read-write data races pro-
grammatically. The use of locks to avoid races has been studied
by Abadi, Flanagan, and Freund [2006]. We adapt the simplest of
their systems to our setting by allowing write-write data races on all
fields and read-write races on fields that are not reliable. Consider
the following locking variant, where p :C3 and l :Lock. (Here syn-
chronized statements do not create scopes, and therefore y remains
visible.)

class C3 { Object f; �Object g guardedby l; }
s[p.f=new Object();

synchronized(l){p.g=new Object();}] |
t[synchronized(l){val y=p.g;} val x=p.f;

if(y!=null){end y; if(x==null){†}}]

Just as in example C2’’ above, the end assertion is safe, and state-
ment † is unreachable. In this case, the happens-before relation is
carried on lock l. The type of g indicates that it is a conserva-
tive field guarded by l. A guarded field may only be accessed in
a context that holds the corresponding lock, thus ensuring the nec-
essary happens-before relations from lock acquisition to field read
and from field write and lock release.

In general, we allow reads and writes to be guarded by differ-
ent boolean combinations of locks, requiring that any set of locks
satisfying the read guard must overlap with every set of locks satis-
fying the write guard. (Overlap is defined in Section 5.2 to capture
the intuition of non-disjoint intersection.) This disallows read-write
data races while still allowing write-write data races. Consider an
example from Sevcík [2008] with write-write data races, but no
read-write data races, where p :D, l :Lock, and k :Lock are shared.

class D { �Object f rdguard (l && k) wrguard (l || k); }
s[synchronized (l){p.f=new Object();}] |
t[synchronized (k){p.f=new Object();}] |
u[synchronized (l){

synchronized (k){�Object x=p.f;}}]

The annotations indicate that the read of p.f requires both locks
l and k, whereas the write of p.f requires only one of them.
This program typechecks in our system. While this example is
contrived, the separate treatment of read and write capabilities on
objects is critical to the design of efficient data structures to avoid
unnecessary sequentialization (see Java’s concurrent hash tables).

4.1 Dummy variables
Our technique uses object identity to reason about dynamic occur-
rences of program points via correspondence assertions. Occasion-
ally, however, interfaces lack appropriate variables to annotate the
happens-before relations of interest. In such cases, we require that
the interface be augmented with dummy variables, which can be
systematically erased at runtime. For example, consider the follow-
ing methods of Atomic, with candidate annotations. (Recall that we
elide the annotation for the implicit parameter this from method
types when annotation is �.)

class Atomic〈χ〉 { ...
χ Object getAndSet(χ Object v);
boolean compareAndSet(Object oldv, χ Object newv); }

Using the data structure invariants, the annotation of the getAnd-
Set method captures exactly the right property: a return from get-
AndSet happens-after the previous set, and a call to getAndSet
happens-before the subsequent get. The compareAndSet method
has the same memory effect as getAndSet, however, its annotation
only gives half of the story: the return value is unannotated. The
situation can be remedied using a dummy variable in the signature
of compareAndSet.

Pair〈boolean, χ Object〉
compareAndSet(Object oldv, χ Object newv);

If compareAndSet returns false, the dummy variable returns null;
otherwise, the dummy variable returns the previous value stored by
the atomic, as in getAndSet.

The unannotated interface of BinaryLatch (adapting Java’s
CountDownLatch) is:

class BinaryLatch { void await(); void countDown(); }

The documented memory effect is that a return of await happens-
after the corresponding call to countDown. Applying our method-
ology leads to the interface

class BinaryLatch〈χ〉 { χ Object await();
void countDown(χ Object v); }

where await returns the value passed to the last call to countDown.
Similar changes can be made systematically throughout the APIs.

class Condition〈χ〉 { χ Object await();
void signal(χ Object); }

class Semaphore〈χ〉 { χ Object acquire();
void release(χ Object v); }

The annotations on Condition indicate the memory effect that a
return of await happens-after the corresponding call to signal,
and similarly for the (binary) Semaphore.

4.2 Building data structures
From the primitive constructs with special memory effects—final
fields, atomic fields, and lock-protected fields—it is possible to
construct useful concurrent data structures. The happens-before
relations created by these data structures are key to concurrent
programing. Indeed, every data structure provided by the java.
util.concurrent API specifies such memory consistency effects.
Our typing annotations are a lightweight mechanism for making
these memory effects amenable to the static analysis.

For example consider BlockingQueue from java.util.con-
current. The Java APIs specify the behavior of a BlockingQueue
in two parts.

• The data structure specification states that there is a one-to-one
correspondence between invocations of the take and the put
methods, such that a take returns the Object that is added into
the data structure by its corresponding put.

• The memory consistency specification states that “actions in a
thread prior to placing an object into a BlockingQueue happen-
before actions subsequent to the access or removal of that element
from the BlockingQueue in another thread” .

In our system, the BlockingQueue is annotated as follows.

class BlockingQueue〈χ〉 { void put(χ Object o);
χ Object take(); . . . }

As with Atomic, the annotations do not capture the data structure
invariant, and only very roughly approximate the memory consis-
tency specification. Nevertheless, they provide valuable informa-
tion. Consider the following variant of our running example, where
p :C4 and q :BlockingQueue〈�〉.
class C4 { Object f; Object g; }
s[p.f=new Object(); p.g=new Object();

q.put(new Object());] |
t[val z=q.take(); val y=p.g; val x=p.f;

end z; if((y!=null)&&(x==null)){†}]

The call to take blocks until put begins execution. Assuming that
q is initially empty and that there are no other threads, then t must
take the object that is put by s. In this case, the � annotation tells
us that the call to put happens-before the return of get. By thread-
local reasoning, we can conclude that the writes by s must happen-
before the call to put, and also that the reads by t must happen-after
the return of take. Reasoning by transitivity, we can conclude that
statement † is unreachable.

Formally, our system allows the inclusion of “end z” in thread
t, indicating that the call of put happened-before the return of
take. To reason about the reachability of †, one must also reason
about thread-local happens-before relations and the confinement q

and p. Our system captures the crucial cross-thread reasoning re-
quired about happens-before, leaving the local reasoning to infor-
mal methods or modular formal methods.

In the rest of this section, we present both non-blocking and
lock-based examples which typecheck in our system, providing
typed implementations of the interfaces discussed above.

4.3 Non-blocking algorithms
The basic building block for writing non-blocking algorithms is the
Atomic class. For example, one can implement the BinaryLatch
interface using an Atomic.

class BinaryLatch〈χ〉 {
final Object init;
final Atomic〈χ〉 witness = new Atomic();
BinaryLatch() {

witness.set(new Object());
init = witness.get(); }

χ Object await() {
while (witness.get() == init) ;
return witness.get(); }

void countDown(χ Object o) {
witness.compareAndSet(init, o); } }

Informally, one can reason that the return of await must hap-
pen-after the call to compareAndSet which must happen-after
the corresponding call to countDown. Thus, the implementation
validates the interface of BinaryLatch.

This guarantee is established formally by typechecking the code
in our system. The type system uses the Atomic interface to deduce
that the return value of await may be annotated by χ . The body of
countDown typechecks because the second argument of compare-
AndSet carries annotation χ . The set of the witness in the con-
structor typechecks because newly created references are viewed
as initially created with a � annotation.

Our type system can validate Treiber’s algorithm for concurrent
stacks, from [Goetz, Peierls, Bloch, Bowbeer, Holmes, and Lea
2005], with the following interface.

class ConcurrentStack〈χ〉 { χ Object pop();
void push(χ Object v); }

When ConcurrentStack〈�〉 satisfies the usual data structure in-
variant, the absence of a write-read data race on the � reference
transmitted from the push to the pop establishes the required hap-
pens-before edge between a return of pop and the corresponding
call of push. This annotated interface is validated by the following
implementation. (We elide the dummy return value of compare-
AndSet.)

class Node〈χ〉 {
final χ Object item;
final � Node〈χ〉 next;
Node(χ Object item,� Node〈χ〉 next) {

this.item = item; this.next = next; } }
class ConcurrentStack〈χ〉 {

final Atomic〈�〉 top = new Atomic〈�〉();
void push(χ Object item) {
� Node〈χ〉 oldHead;
� Node〈χ〉 newHead;
do { oldHead = top.get();

newhead = new Node(item,oldHead);
} while (!top.compareAndSet(oldHead, newHead)); }

χ Object pop() {
� Node〈χ〉 oldHead;
� Node〈χ〉 newHead;
do { oldHead = top.get();

if (oldHead == null) return null;
newHead = oldHead.next;

} while (!top.compareAndSet(oldHead, newHead));
return oldHead.item; } }

The annotation parameter of the ConcurrentStack (and Node)
classes matches that on the items that are stored in the stack. On the
other hand, the code maintains the invariant that all references to
the nodes on the stack carry � annotation. This invariant is used to
satisfy the requirement that the second arguments of the compare-
AndSet carry� annotation. In order to maintain the invariant at the
creation of new stack nodes in the push method, the Node.next
field must be final.

4.4 Programs with locks
Our locks are based on Java locks, with some different conventions
to simplify the semantics. Synchronization can only be performed
using block-based synchronization on an instance of the Lock
class. We take both Lock and the associated Condition class
to be primitives; however, one can safely think of these as being
implemented using atomic objects.

Locks can be used to validate the following implementation of
the enriched interface for binary semaphores discussed above.

class Semaphore〈χ〉 {
final Lock l = new ReentrantLock();
final Condition〈χ〉 open = new Condition(l);
χ Object witness guardedby l;
χ Object acquire() {

χ Object temp;
synchronized(l) {

while (witness == null) {
witness = open.await(); }

temp = witness;
witness = null; }

return temp; }
void release(χ Object o) {

synchronized(l) {
if (witness == null) {

witness = o; open.signal(o); } } }

The required guarantee follows from typing. The witness field
is guarded by lock l, and our system ensures that all accesses
to witness happen only when this lock has been acquired. The
assignment to witness in acquire typechecks because of the
Condition interface. In typechecking countDown, the Condition
interface forces the argument of release to have χ annotation.
The two cases of control flow for the witness returned by acquire
are merged via the annotations on witness and temp and their
typechecking.

5. Typing classes
We present the syntax and type rules for classes, using the anno-
tations described in the previous section. In the next section, we
describe the safety theorem: starting from a well-typed class table,
(small step) evaluation of the bootstrap process cannot get stuck,
and therefore, in particular, every end must always happen-after
the creation of the corresponding object.

The statement of safety requires that we define well-typed
classes, the evaluation relation, the bootstrap process and the stuck
predicate. The proof of safety follows by defining well-typed pro-
cesses, demonstrating that the bootstrap process is well-typed, and
proving preservation and progress.

To simplify the semantics, we use a more restrictive language
than that of the previous section. These changes are made only for
conciseness of exposition: they do not alter the expressive power

of the language or its type system. We make all local variables im-
mutable and implement iteration via recursion. We make all se-
quencing explicit; for example return this.f.g must be written
val x=this.f; return x.g.

The operational semantics follows our previous paper [Ja-
gadeesan, Pitcher, and Riely 2010], which is in turn based on the
JMM. In order to capture the properties of interest, we have en-
riched our previous semantics to include final fields, as well as
primitive support for the Atomic and Condition classes. Unlike
our previous work, we require block-structured use of Locks, which
simplifies typing. Since local variables are immutable, we add a re-
turn value to these synchronization blocks, so that they can provide
results to the thread without requiring the use of a mutable field.

5.1 Syntax
Let x and y range over variable names (including the reserved
variable this), d over class names (including the reserved classes
Object, Atomic, Lock and Cond), f and g over field names, and
m over method names (including the reserved methods start and
run).

Class types may be parameterized by annotations. Let χ range
over annotation variables and γ range over the ground annotations
(γ ::= � |�). An annotation, a, b, c, is either an annotation variable
or a ground annotation (a,b,c ::= χ | γ). Class types, D, have the
form d〈~a〉. A type may be a class type or a base type (T,S ::=
D | bt). We routinely drop empty type brackets 〈〉.

Let bv range over base values (including integers and the con-
stants unit, true and false). The set of ground values, v, w, u,
includes null and the base values. (For running processes, the set
of ground values will also include object names.) Open values in-
clude ground values and variables (V,W,U ::= v | x). Let op range
over base value operators (such as ==, +, &&). We assume that null
has meaning at all base types (zero for integers, false for booleans).
The statement language is as follows:

M,N ::= return V; (Return statement)
| val x = new D(~V); M (Creation statement)
| val x = W.m(~V); M (Method statement)
| val x = op(~V); M (Operator statement)
| val x = (D)V; M (Cast statement)
| end V; M (End statement)
| val x = V.f; M (Field read statement)
|V.f = W; M (Field write statement)
| if (V) {M} else {N} (Conditional statement)
| val x = sync V {N} M (Synchronization statement)

As discussed above, synchronization statements allow a return
value. All the other constructs are standard.

We often drop the keyword val, use complex expressions and
infix notation for operators and drop instances of “return unit;”.
Thus, “y = a+b+c;” is sugar for “val x = +(a,b); val y = +(x,
c); return unit;”, where x is fresh. We write “val x = · · ·; M”
as “· · ·; M” if x does not occur free in M. We write ↑V for “return
V;” and ↑(V,W) for “val x = new Pair(V,W); return x;”,
where x is fresh. We write “if (V){val x = · · ·;} M” for “if(V)
{val x = · · ·; M} else {M}” if x does not occur free in M; this
notation extends to field write statements, conditional statements
and sequences of statements in the obvious way.

The variable x is bound with scope M in all statements of the
form “val x = · · ·; M”. For any syntax category, let fv return the
set of free variables and let fn return the set of free names.

Class definitions have the following form.

D ::= class d〈~χ〉{ ~F ~M } (Class declaration)
M ::= aT m(bthis;~a~T ~x){M} (Method declaration)
F ::= T f; | final aD f; (Field declaration)

| aD f rdguard Φ wrguard Ψ;
Φ,Ψ ::= true | F | Φ&&Ψ | Φ||Ψ (Guard)
F,G ::=V | F.f (Field path)

There are field declaration forms for normal, final and lock-pro-
tected fields. Annotated fields must have object types. Annotated
base types are useless since end requires an object type. Lock-
protected fields have read and write guards, which are boolean
combinations of field paths. When typing classes, all field paths
will have the form this.f1.f2.· · ·.fn. We elide read or write
guards when uninteresting and write guardedby Φ as shorthand
for rdguard Φ wrguard Φ. We elide the � annotation in variable
and field declarations, and �this in method declarations.

The annotation variables~χ are bound in the declaration class d
〈~χ〉{ ~F ~M }, with scope ~F and ~M . We identify syntax up to
renaming and write F{[~a/~χ]} for the capture avoiding substitution
of~a for ~χ in F , and likewise for M .

Suppose d is declared as class d〈~χ〉{ ~F ~M }. Define the par-
tial function ftype so that ftype(d〈~a〉.f) = final aT if ~F{[~a/~χ]}
contains the declaration “final aT f;”, and likewise for racing
and lock-protected fields. Define the partial function mtype so that
mtype(d〈~a〉.m) = b;~a~T � aT if ~M {[~a/~χ]} contain the declaration
aT m(bthis;~a~T ~x){M}. Define finals(D) =~f if ~f are the final
fields of class D, and similarly nonfinals.

5.2 Typing
Typing environments have the following form.

E ::= E,χ | E,x :aT | E,final x=F | E,lockV

We identify environments up to reordering and repetition. Sup-
porting judgments such as well-formed environment (E ` �), type
(E ` T), and annotation (E ` a) simply account for free and bound
annotation variables. These definitions are elided.

Guard satisfaction is a propositional logic over field paths, with
substitution of final paths.

E 3 lock F
E
 F

E,E ′{[F/x]}
Φ

E,x :aT,final x=F,E ′
Φ

E
 true
E
Φ E
Ψ

E
Φ&&Ψ

E
Φ

E
Φ||Ψ

E
Ψ

E
Φ||Ψ

Intuitively, two guards must overlap if the sets of field paths that
satisfy them must always have a non-disjoint intersection. The
formal definition is a safe syntactic approximation of this intuition:
Let F and G range over sets of field paths. Then any guard Φ can be
written in disjuntive normal as

∨
iFi, where each set Fi is viewed

as a conjunction of field paths. We say that Φ must overlap with Ψ

if Φ =
∨

iFi, Ψ =
∨

j G j , and Fi∩G j 6= /0 for all i, j.
Class (` D), method (E `M in D) and field declarations (E `

F) are as follows.

∀i. ~χ `Fi ∀ j. ~χ `M j in d〈~χ〉
` class d〈~χ〉{ ~F ~M }

E,this :bD,~x :~a~T `M : aT
E ` aT m(bthis;~a~T ~x){M} in D

E ` T
E ` T f;

E ` a E ` D
E ` final aD f;

E ` a E ` D E `Φ,Ψ Φ must overlap with Ψ

E ` aD f rdguard Φ wrguard Ψ;

These are standard definitions, with annotations added. There are
three forms of field declaration, and correspondingly three type
rules. The read and write guards of a lock-protected field must
overlap.

(VAL-VARIABLE)
E ` � E 3 x :aT
E ` x : aT

(VAL-NULL)
E ` � E ` a E ` D
E ` null : aD

(VAL-SUB-TYPE)
E `V : aD
E `V : aObject

(VAL-SUB-ANN1)
E `V : aT
E `V : �T

(VAL-SUB-ANN2)
E `V : �T
E `V : aT

(STAT-NEW)
finals(D) =~f E `~V : ~b~S
ftype(D.~f) = final~b~S
E,x : � D `M : aT
E ` val x = new D(~V); M : aT

(STAT-METHOD)
E `W : cD E `~V : ~b~S
mtype(D.m) = c;~b~S � bS
E,x :bS `M : aT
E ` val x = W.m(~V); M : aT

(STAT-LOCK)
E `V : �Lock E,lockV ` N : bS
E,x :bS `M : aT
E ` val x = sync V {N} M : aT

(STAT-RETURN)
E `V : aT
E ` ↑V : aT

(STAT-FINAL-READ)
E `V : cD ftype(D.f) = final bS
E,x :b′ S,final x=V.f `M : aT
E ` val x = V.f; M : aT b′ =

{
b, if b = c
�, otherwise

(STAT-RACING-READ)
E `V : �D ftype(D.f) = S
E,x : � S `M : aT
E ` val x = V.f; M : aT

(STAT-RACING-WRITE)
E `V : �D ftype(D.f) = S
E `W : �S E `M : aT
E `V.f = W; M : aT

(STAT-GUARDED-READ)
ftype(D.f) = bS rdguard Φ

E `V : �D E
Φ{[V/this]}
E,x :bS `M : aT
E ` val x = V.f; M : aT

(STAT-GUARDED-WRITE)
ftype(D.f) = bS wrguard Ψ

E `V : �D E
Ψ{[V/this]}
E `W : bS E `M : aT
E `V.f = W; M : aT

(STAT-END)
E `V : �D
E `M : aT
E ` end V; M : aT

(STAT-IF)
E `V : �boolean E `M : aT E ` N : aT
E ` if (V) {M} else {N} : aT

Figure 1. Statement typing (rules for base types elided)

The judgments for well-typed values (E ` V : aT) and state-
ments (E `M : aT) are given in Figure 1; we have elided standard
rules for base values, operators casting and conditionals.

STAT-NEW creates objects with �. The final fields of the class
must be initialized by the constructor; non-final fields are set to
null. STAT-END requires � objects.

VAL-SUB-ANN1 and VAL-SUB-ANN2 define subtyping on an-
notations, with � as bottom and � as top.

In STAT-LOCK, statement N is typed under the assumption that
lock V has been acquired, allowing guard satisfaction in STAT-
GUARDED-READ and STAT-GUARDED-WRITE.

For final fields, the annotation on V must agree with that of the
field to impart any benefit to the reader; otherwise, the reader sees
�. The rules for racing fields impose no annotation restrictions on
the writer, nor do they impart any annotation benefit to the reader.
The rules for accessing a lock-protected field V.f require that the
field and value agree in their annotation; the annotation on V is
irrelevant.

6. Soundness
To validate the soundness of our system, we use a small-step reduc-
tion relation. In this section, we explain the operational semantics,
define soundness, and discuss highlights of the soundness proof.

There is insufficient space to include all definitions with suffi-
cient motivation, therefore we elide the following (a) synchroniza-
tion statements (the interesting issues are already revealed by atom-
ics); (b) discussion of auxiliary definitions used in the operational

semantics; (c) most of the additional typing rules used to prove sub-
ject reduction; and (d) all proofs. These details are included in the
full version of the paper.

6.1 Operational semantics
Let p, q, s, t and ` range over object names; by convention, we use
name metavariables s, t for thread objects and ` for atomic objects.
Process syntax is as follows, where name p is bound with scope A
in the process (ν p)A.

v,w,u ::= null | bv | p (Ground value)
M,N ::= · · · | val x = {N} M (Statement)
α,β ::= 〈s!p〉 | 〈s!p.f=v〉 | 〈s!`: j〉 (Action)
A,B ::= p:D | `:Atomic{v; j} (Process)

| free p | runnable p
| α A | s[M] | A|B | (ν p)A
| >⇒A8〈s?p.f=v〉⇒B

The syntax of ground values and statements are extended to include
the necessary runtime constructs. A partially executed method is
written “val x = {N} M”, where N is the (residual of the) method
body, and M is the (residual of the) calling context; that is, M is the
statement that executes after the method returns.

An action indicates that the creation of an object, a write, or a
synchronization has occurred. As a process executes, actions ac-
cumulate in the context of a thread. The first two process forms
provide denotations for object names. The denotation of an atomic
includes the state of the object. The denotation of other objects in-
cludes only the class; the values of fields are determined by the ac-
tion context, which varies over time and between threads. Lifecycle
flags (free p and runnable p) are used to track the lifecycle of an
object. Object denotations, lifecycle flags and threads (s[M]) are
composed using restriction ((ν p)A), action prefixing (α A), parallel
composition (A|B) and speculation (>⇒A8〈s?p.f=v〉⇒B).

In the rest of this subsection, we formalize the reduction relation
(A→ B). The exposition is necessarily dense, as we do not have
space to provide motivation or discussion, which can be found in
[Jagadeesan, Pitcher, and Riely 2010]. On first reading, it is best to
skim this material, coming back to it as necessary.

Actions include empirical actions α , β , speculative actions
〈s?p.f=v〉, ψ , and thread-labeled context holes sJ–K. Let thrd(σ)
return the unique thread associated with an action. For write and
speculation actions define loc and val to return the location and
value of the action as loc(〈s!p.f=v〉) = loc(〈s?p.f=v〉) = p.f ,
and val(〈s!p.f=v〉) = val(〈s?p.f=v〉) = v. Let act(C,s) return the
sequence of labeled actions occurring before the hole in C.

act(J–K,s) = sJ–K
act(α C,s) = α act(C,s) act(C|A,s) = act(C,s)

act((νq)C,s) = act(C,s) act(A|C,s) = act(C,s)
act(>⇒A8〈s?p.f=v〉⇒C,s) = 〈s?p.f=v〉act(C,s)
act(>⇒C8〈s?p.f=v〉⇒A,s) = act(C,s)

We say that context C enables 〈s!`: j〉 if j = 0 or 〈t!`: j−1〉 ∈
act(C,s), for some t. We say that C,s is contiguous if when-
ever C = C′J〈t!`: j〉C′′K for j > 1 then there exists t ′ such that
〈t ′!`: j−1〉 ∈ act(C′,s). We define several notions for contiguous
contexts. Suppose C,s is contiguous.

Define program order (<C,s
po) and synchronizes-with (<C,s

sw) as
relations on the indices of ~σ , where ~σ = act(C,s).

i <C,s
po j iff i < j and thrd(σi) = thrd(σ j)

i <C,s
sw j iff σi = 〈s!`:n−1〉 and σ j = 〈t!`:n〉

for some s, t, ` and even n

Define happens-before order (<C,s
hb) to be the transitive closure of

the union of program order and synchronizes-with.

Suppose C,s is contiguous. Let ~σ = act(C,s). Let k be the index
of sJ–K in ~σ .

• Define C,s justifies end p if there exists i and t such that 〈t!p〉=
σi and i <C,s

hb k
• Define C,s justifies read p.f=v if all of the following hold for

some i.

σi = 〈t!p.f=v〉 for some t (possibly equal to s), or σi =
〈t?p.f=v〉 for some t 6= s; and

for every j such that σ j is a write action and i <C,s
hb j <C,s

hb k, we
have that loc(σ j) 6= loc(σi).

• Define C,s justifies speculation p.f=v if all of the following hold
for some i.

σi = 〈s!p.f=v〉;
for every j such that σ j is a write action and i <C,s

hb j <C,s
hb k, we

have that loc(σ j) 6= loc(σi); and

for every j such that σ j is a release action and i <C,s
hb j <C,s

hb k,
we have that thrd(σ j) 6= thrd(σi).

Define the structural order A= B to be the least precongruence
on processes that satisfies the axioms in Equation 6.1 (where A

.≡ B
abbreviates the two axioms A = B and B = A). Define ≡ to be the
kernel of =.

As usual, the structural order allows processes to move around
in the syntax. It also allows actions to move outwards from a
process and to commute in certain cases. The commuting rules
follow the normal intuitions [Lea 2008].

The structural order (=) is defined using an order (.) on single-
threaded action sequences; ~σ . ~τ is defined only if |thrd(~σ) ∪
thrd(~τ)| = 1. Formally, . is defined to be the least precongruence
on single-threaded action sequences that satisfies the following.
(A-NONLOCK) If σ is a write or speculation, τ is write or specula-

tion and loc(σ)= loc(τ) implies val(σ)= val(τ) then στ . τσ .
(A-BEGIN) If α is a begin then 〈s?p.f=v〉α . α〈s?p.f=v〉.
(A-ACQUIRE) If α is write and β is an acquire then αβ . βα .
(A-RELEASE) If α is write and β is a release then βα . αβ .
(A-ABSORPTION1) If α is a write then α . αα .
(A-ABSORPTION2) If α and β are writes to the same location then

βα . α .
(A-ABSORPTION3) If α , β and β ′ are writes to the same location

then ββ ′α . β ′βα .

Define the reduction relation A → B to be the least relation
satisfying the rules and axioms in Equations 6.1. Define � to
be the reflexive and transitive closure of →. In the figure, BV is
the set of base values. We rely on many other standard auxiliary
definitions1.

1 In classes and methods, the parameters are bound. In statements, bound
variables are preceded by val. In processes, bound names are preceded by
ν . There are no binders in contexts. We identify syntax up to renaming
of bound variables and names and write M{[v/x]} for the capture avoiding
substitution of v for x in M. We assume similar notation for substitution of
names for names and for substitution over other syntax categories.
Suppose d is declared as class d〈~χ〉{ ~F ~M}. Define the partial function
ftype so that ftype(d〈~a〉.f) = final aT if ~F{[~a/~χ]} contains the declaration
“final aT f;”, and likewise for racing and lock-protected fields. Define
the partial function mtype so that mtype(d〈~a〉.m) = b;~a~T � aT if ~M {[~a/~χ]}
contain the declaration aT m(bthis;~a~T ~x){M}.
To define the dynamics, it suffices to describe classes in terms of three
partial functions (finals, nonfinals and mbody). If finals(d〈~a〉) =~f then
~f are final fields of class d, similarly for nonfinals. If mbody(d〈~a〉.m) =
λ~x.M then d implements method m with parameters ~x and body M. The
abstraction λ~x.M is written λ .M when~x is the empty sequence.

(S-NU-FREE)

A
.≡ A|(ν p)(p:d〈~γ〉|free p)

(S-NU-PAR)

(ν p)(B|A)
.≡ B|((ν p)A)

p /∈ fn(B)
(S-PAR-PAR)

B|(A|A′)
.≡ (B|A)|A′

(S-PAR)

A|A′
.≡ A′|A

(S-NU-NU)

(ν p)(ν p′)A
.≡ (ν p′)(ν p)A

(S-NU-PREFIX)

(ν p)αA
.≡ α(ν p)A

p /∈ fn(α)
(S-PREFIX-PAR)

B|(αA)= α(B|A)
(S-PREFIX)

~αA= ~βA
~α . ~β

(S-PREFIX-SPECULATION)

>⇒(α A)8〈s?p.f=v〉⇒(α A′) = α (>⇒A8〈s?p.f=v〉⇒A′)
〈s?p.f=v〉α . α〈s?p.f=v〉
or thrd(〈s?p.f=v〉) 6= thrd(α)

(S-NU-SPECULATION)

(ν p)(>⇒A8〈s?p.f=v〉⇒A′)
.≡>⇒((ν p)A)8〈s?p.f=v〉⇒((ν p)A′)

p /∈ fn(〈s?p.f=v〉)

(S-PAR-SPECULATION)

B|(>⇒A8〈s?p.f=v〉⇒A′)
.≡>⇒(B|A)8〈s?p.f=v〉⇒(B|A′)

thrd(〈s?p.f=v〉) /∈ thrds(B)

(R-STRUCTURAL-ORDER)
A= B B→ B′ B′ = A′

A→ A′

(R-CAST)
C 3 p:D

C
q

s[val x = (D)p; M]
y

→ C
q

s[M{[p/x]}]
y

(R-OPERATOR)
w is the result of op on~v

C
q

s[val x = op(~v); M]
y

→ C
q

s[M{[w/x]}]
y

(R-IF-TRUE)

C
q

s[if (true) {M} else {N}]
y
→ C

q
s[M]

y

(R-IF-FALSE)

C
q

s[if (false) {M} else {N}]
y
→ C

q
s[N]

y

(R-METHOD-CALL)
C 3 p:D mbody(D.m) = λ~y.N D not reserved m 6= start

C
q

s[val x = p.m(~v); M]
y

→ C
q

s[val x = {N{[p/this]}{[~v/~y]}}M]
y

(R-METHOD-RETURN)

C
q

s[val x = {↑v}M]
y

→ C
q

s[M{[v/x]}]
y

(R-METHOD-CONTEXT)

C
q

s[N]
y
→ C′

q
s[N′]

y

C
q

s[val x = {N }M]
y

→ C′
q

s[val x = {N′}M]
y

(R-START)
C 3 p:D mbody(D.run) = λ~y.N D not reserved C 3 `:Lock

C
q
free ` | s[val x = p.start(); M] | runnable p

y

→ C
q

〈s!`:1〉 (s[M{[unit/x]}] | 〈p!`:2〉 p[N{[p/this]}])
y

(R-NEW)
C 3 p:D finals(D) =~f nonfinals(D) =~g D not reserved

C
q
free p | s[val x = new D〈~a〉(~v); M]

y

→ C
q
runnable p | 〈s!p.~f=~v〉 〈s!p.~g= ~null〉 〈s!p〉 s[M{[p/x]}]

y

(R-FIELD-WRITE)

C
q

s[p.f = v; M]
y
→ C

q
〈s!p.f=v〉 s[M]

y

(R-FIELD-READ)
C,s justifies read p.f=v
C
q

s[val x = p.f; M]
y
→ C

q
s[M{[v/x]}]

y

(R-END)
C,s justifies end p

C
q

s[end p; M]
y

→ C
q

s[M]
y

(R-SPECULATION-OPEN)
s ∈ thrds(A) p ∈ objs(A) v ∈BV ∪objs(A)
C
q

A
y
→ C

q
>⇒A8〈s?p.f=v〉⇒A

y

(R-SPECULATION-CLOSE)
C,s justifies speculation p.f=v
C
q
>⇒A8〈s?p.f=v〉⇒B

y
→ C

q
B
y

(R-ATOMIC-NEW)

C
q
free ` | `:Atomic | s[val x = new Atomic(v); M]

y

→ C
q
`:Atomic{v;1} | 〈s!`〉 〈s!`:1〉 s[M{[/̀x]}]

y

(R-ATOMIC-GETANDSET)

C
q
`:Atomic{v; j} | s[val x = `.gas(w); M]

y

→ C
q
`:Atomic{w; j′+1} | 〈s!`: j′〉 〈s!`: j′+1〉 s[M{[v/x]}]

y

j′ = j+1 if j odd
j′ = j if j even
C enables〈s!`: j〉

(R-ATOMIC-GET)

C
q
`:Atomic{v; j} | s[val x = `.get(); M]

y

→ C
q
`:Atomic{v; j′} | 〈s!`: j′〉 s[M{[v/x]}]

y

j′ = j+1 if j odd
j′ = j if j even
C enables〈s!`: j〉

(R-ATOMIC-COMPAREANDSET-FALSE)

C
q
`:Atomic{v; j} | s[val x = `.cas(u,w); M]

y

→ C
q
`:Atomic{v; j} | s[M{[null/x]}]

y
u 6= v

(R-ATOMIC-SET)

C
q
`:Atomic{v; j} | s[val x = `.set(w); M]

y

→ C
q
`:Atomic{w; j′} | 〈s!`: j′〉 s[M{[unit/x]}]

y

j′ = j if j odd
j′ = j+1 if j even
C enables〈s!`: j〉

(R-ATOMIC-COMPAREANDSET-TRUE)

C
q
`:Atomic{v; j} | s[val x = `.cas(v,w); M]

y

→ C
q
`:Atomic{w; j′+1} | 〈s!`: j′〉 〈s!`: j′+1〉 s[M{[v/x]}]

y

j′ = j+1 if j odd
j′ = j if j even
C enables〈s!`: j〉

Figure 2. Structural order (A= B) and reduction (A→ B)

Many of the reduction rules are standard. We very briefly dis-
cuss some of the exceptions.

Atomic objects maintain a shared global state, enforcing se-
quential consistency. The state includes an integer, which is odd if
the last operation was a set. These objects generate synchronization
actions, which define the synchronizes-with relation. Even actions
may be seen as an get/acquire and odd actions a set/release. In the
formal development, we take it that cas returns null if the com-
parison fails, and the prior object otherwise.

As in Java, the reserved method start starts method run under
the thread identity of the receiving object; this is a synchronization
event enforced using a fresh “dummy” lock.

R-FIELD-WRITE describes field writes in a relaxed memory
model, so the field writes become actions that float into the evalu-
ation context. Field reads, R-FIELD-READ, may take any value that
is justified by the evaluation context. R-END removes an end if the
creation of the object reference is in a happens-before relationship;
this is used in the following sections on typing.

Speculation can occur at any point, using R-SPECULATION-
OPEN. The initial branch has guard >, indicating that this branch

may make no additional assumptions. The final branch has a spec-
ulative action as its guard that can be used to justify reads. The
context rules permit each branch of speculation evolve indepen-
dently. Results from an active speculation can only leak to the out-
side world via S-PREFIX-SPECULATION if all branches produce
the same action. This is significant, since only actions that man-
age to make it outside of a speculation may be used to finalize via
R-SPECULATION-CLOSE.

6.2 Defining soundness
Soundness is defined in terms of stuck threads, which are defined
in terms of evaluation contexts, defined as follows.

E ::= J–K | val x = {E} M (Statement ctxt)
C ::= J–K | C|A | A|C | (ν p)C | α C (Process ctxt)

| >⇒C8〈s?p.f=v〉⇒A | >⇒A8〈s?p.f=v〉⇒C

Roughly, a stuck thread is a non-terminated thread that cannot
reduce. As discussed by Igarashi, Pierce, and Wadler [2001], Java
allows runtime type exceptions which are not considered a failure

of the static type system. Here we also have null pointer excep-
tions2.

Definition 1 (Stuck thread). Thread s is stuck in A if there exists
C
q

s[EJMK]
y
= A such that none of the following hold.

(1) s has terminated: M is a return statement and E= J–K;
(2) s can reduce: C

q
s[EJMK]

y
→ C′

q
s[M′]

y
for some C′, M′;

(3) s has had a class cast exception: M = val x = (D)v; M′ and C
does not contain subterm v:D; or

(4) s has had a null pointer exception: M is a method, end, read,
write, conditional or synchronization statement with target
null. 2

The stuck processes of most interest come about because of the
premise of the reduction rule for end statements. In order for end p
to reduce, it must be the case the action 〈t!p〉 happens-before, for
some t. This is a global property of the system, tracking data flow.
Theorem 2 (Soundness). Suppose the class table is well typed and
method Main.main () is defined. Suppose further that A is a
speculation-free process that is reachable from the bootstrap pro-
cess, that is

(νm) m:Main | m[m.main();]→ ··· → A.

Then A does not contain a stuck thread. 2

We restrict attention to speculation-free processes, because threads
within the final branch of a “bad” speculation may get stuck. Typing
ensures that such speculations can never be finalized.

7. Typing processes
The proof of soundness follows standard lines: We provide typing
rules for processes and prove subject reduction and progress. The
details of the proof are too long to include here. Indeed, even the
invariant maintained by running processes is too long to fully de-
scribe here. In this section, we describe some of the most interest-
ing typing rules for processes, which embody intermediate states
of computation. We first discuss the rules for “standard” processes,
then for speculation.

In order to type processes, we introduce effects and extend
environments as follows.

ζ ,ξ ::= * p+
E ::= · · · | E, p :D | E,s :lock ` | E,s returns aD

| E,ζ | E,s :ζ | E, ` :ζ | E,onacq Φ ζ

The effect *p+ indicates that 〈t!p〉 has occurred, for some t. Effects
are associated with threads (s :ζ) and synchronization objects, or
locks (` :ζ). Naked effects (ζ), used in statement typing, are asso-
ciated with the “local” thread. The environment s :lock ` indicates
that s holds lock `. The onacq environment is used to type bad
speculations, as discussed in Section 7.1.

Define locks(s, E) = {lockV | s :lockV ∈E} and effects(s, E)
= {ζ | s :ζ ∈E}. Define E
s Φ to mean E,effects(s, E), locks(s, E)

 Φ, and similarly for E s̀ V : aT and E s̀ M : aT . Let Z range
over sets of effects.

The new rules for values and the key rules for processes (E ` A)
and actions (E ` σ . E ′) are given in Figure 3. The proof of sound-
ness also uses well-formedness, which is defined in the full ver-
sion of this paper. Well-formedness is trivially true of the bootstrap
process and is preserved by structural order and reduction. Well-
formedness eliminates nonsense processes, such as s[M]|s[N]
and 〈s!p.f=v〉〈t!p.f=w〉A, where f is a final field.

The action sequence records the entire history of the running
process. The type rules can compute the happens-before relation

2 When formalizing synchronization statements, one must add a case for
threads that are waiting to acquire a lock.

(VAL-OBJECT-�)
E ` � E 3 p :D
E ` p : �D

(VAL-OBJECT-�)
E ` � E 3 p :D E
 *p+
E ` p : �D

(PROC-ACTION)
E ` α . E ′ E ′ ` A
E ` α A

(PROC-THREAD)
E 3 s returns aT E s̀ M : aT
E ` s[M]

(ACT-BEGIN)
s ∈ dom(E) p ∈ dom(E)
E ` 〈s!p〉 . E,s : * p+
(ACT-ACQUIRE)
s ∈ dom(E) E 3 ` :Lock
E ′ =

{
s :ζ

∣∣ E 3 onacq Φ ζ and E
s Φ
}

E ` 〈s!`: j〉 . E,E ′,s :lock `,s :effects(`, E)
j even

(ACT-RELEASE)
s ∈ dom(E) E 3 ` :Lock
E,s :lock ` ` 〈s!`: j〉 . E, ` :effects(s, E)

j odd

(ACT-�-GUARDED-WRITE)
s ∈ dom(E) E 3 p :D ftype(D.f) =�S wrguard Ψ

E s̀ v : �S E 3 t : * p + implies E
s Ψ{[p/this]}
E ` 〈s!p.f=v〉 . E

Figure 3. Selected type rules for processes (actions and threads)

(ACT-�-GUARDED-SPECULATION)
s ∈ dom(E) E 3 p :D
E s̀ v : �S ftype(D.f) =�S rdguard Φ

E ′ =
{

t : * v+
∣∣ E
t Φ{[p/this]}

}
E ` 〈s?p.f=v〉 . E,E ′,onacq (Φ{[p/this]}) (*v+)
(ACT-�-FINAL-SPECULATION)
s ∈ dom(E) E s̀ v : �S
E 3 p :D ftype(D.f) = final � S
E ` 〈s?p.f=v〉 . E,

{
t : * v+

∣∣ E
t *p+
}

(PROC-SPECULATION)
E ` A E ` φ . E ′ E ′ ` B
E ` >⇒A8φ⇒B
(PROC-SPECULATION-SHAPE-ERROR)
s ∈ dom(E) E 3 p :D E ` A
ftype(D.f) = . . .D′ . . . and E 3 v :D′′ and D′′ 6= D′

E ` >⇒A8〈s?p.f=v〉⇒B

Figure 4. Selected type rules for processes (speculation)

as it moves through the action context. The same is true for the
locks held at any point. Subject reduction uses the fact that such
sequences are stable up to single-threaded action reordering.

ACT-ACQUIRE adds a lock to the environment and copies effects
from locks to threads. ACT-RELEASE removes a lock from the
environment and copies effects from threads to locks. (We discuss
onacq in in Section 7.1.)

Using PROC-ACTION and ACT-BEGIN, the effect *p+ is avail-
able to A in 〈t!p〉A. The VAL-OBJECT rules subsequently require
that *p+ be present in order to type p at �.

ACT-�-GUARDED-WRITE directly parallels STAT-GUARDED-
WRITE, ensuring that appropriate locks and effects are in scope.
The locks are only necessary after the fields of p are initialized and
thus t :*p+ is in scope, for some t. This rule is preserved by action
reordering: Although write actions can commute with some write
actions, the rules require that locks can only expand their scope.

7.1 Speculation
Several of the typing rules for speculation are given in Figure 4.

The speculation >⇒A8〈s?p.f=q〉⇒B allows the justifying
branch A and final branch B to proceed independently, and also
allows the final branch to speculate on a future write 〈s!p.f=q〉.
The operational semantics does not constrain the speculated write,
so the speculated write may not be well-typed. Consequently, a read
of the speculated write by the final branch process B can cause the
resulting final branch to fail to type. Moreover, the speculation can
reduce to the final branch if the speculated write is justified by the
speculation’s context. Thus it is natural to ask whether a process
with ill-typing confined to the final branch of a speculation can
reduce to a process with ill-typing outside speculation.

There are two classes of typing errors that may arise. First,
shape errors may arise when a speculated write refers to an object
with an incompatible class. For example, the speculated write has
a shape error in the following process, where p :C7, q :Object.

class C7 {C7 f;}
>⇒ . . .8〈s?p.f=q〉⇒ . . .

Such shape errors are permitted in final branches of speculations.
However, such speculations are unfinalizable since a well-typed
justifying branch, which does not see the speculation, cannot pro-
duce the necessary write to justify the speculation. The use of the
justifying branch of a speculation as a filter is critical to prevent
ill-typed actions leaking from the final branch of a speculation.

Type errors may also arise in the final branch of a speculation
due to a misuse of effects, but such speculations are also unfinal-
izable. Unlike shape errors, it is not immediately evident that an
effect error has occurred. Our approach with effects, therefore, is
to saturate the final branch with sufficient effects to ensure that no
type errors arise, while ensuring that all of the imparted effects can
be justified when the speculation is finalized.

A read of the speculated write may convey information about
happens-before relationships via �-annotated types that is not
justified by the process context. For example, a speculated write
〈s?p.f=q〉 may be read in the final branch of a speculation in the
absence of a happens-before relationship with *q+ (thus prevent-
ing a write action 〈s!p.f=q〉 being typeable at the point of the
speculation).

The type system accommodates potential memory-effect er-
rors by associating speculated effects *q+ with speculated writes
〈s?p.f=q〉, whenever the corresponding write 〈s!p.f=q〉 would
convey a memory effect. This allows the final branches of specu-
lations to be typed even if reduction reads speculated writes that
do not yet convey happens-before relationships. Speculated effects
can be discharged when their associated speculations are finalized
because the justifying writes for the speculation appear outside the
speculation and thus justify the speculated memory effects.

Typing for speculation on a final field does not require locks
or latent effects. Instead, as with reads of final fields, it is sig-
nificant whether a thread has the effect *p+ given a speculated
write 〈s?p.f=q〉. ACT-�-FINAL-SPECULATION generates an en-
vironment extension with an effect *q+ for all threads that prove
*p+. If the speculation on a final field’s write is finalized, the use
of ACT-�-FINAL-SPECULATION can be discharged immediately in
the resulting final branch.

It is worth emphasizing that the additional effects provided by
speculative fields are only necessary for speculations that cannot
be finalized. Our semantics has been designed to allow as many
speculations as possible.

Alternatively, one could attempt to disallow “useless” specula-
tions, which either (1) cannot be finalized or (2) add nothing to the
execution. For example, one can show that speculation with a value
of the wrong shape is useless, for the first reason; speculating on a
lock-protected field is useless, for the second reason. It seems diffi-
cult, however to prohibit useless speculation on final fields, which

communicate effects. In addition, our approach can be adapted to
richer effect languages.

7.2 Typing examples
The environments used to type processes have some shared infor-
mation, common to all threads, such as the type of an object refer-
ence p. In addition, environments record local information includ-
ing effects held on a per thread basis. Consequently, each thread
may have a different view of the effects associated with an object.

For example, consider the following process (we leave names
free, and omit uninteresting local variable bindings and continua-
tion terms). Let p :C5.

class C5 {final �Lock l; �Object f guard this.l;}
s[val x=new Object(); sync p.l{p.f=x;}] |
t[sync p.l{val y=p.f; end y;}]

After the constructor, thread s will be typed in an environment
including x :� Object. In the presence of suitable auxiliary pro-
cesses such as “free q”, the above process may reduce to the fol-
lowing, where p :C5, q :Object.

〈s!q〉(s[sync p.l{p.f=q;}] |
t[sync p.l{val y=p.f; end y;}])

The environment for typing the threads includes p :C5, q :Object,
s : * q + . The localized effect s :*q+ represents the fact that code
running at thread s has a happens-before relationship with q’s con-
structor. This effect is introduced into the environment by PROC-
ACTION’s use of ACT-BEGIN when typing the action 〈s!p〉. The
same effect is required to justify the typing of q as �Object by
VAL-OBJECT-�. Without the effect s :*q+, uses of q could only be
typed as �Object via VAL-OBJECT-�.

The effect s :*q+ cannot be used directly within thread t, but
is communicated in the statics (as in the dynamics) via memory
synchronization actions such as lock acquisition and release. To
see this, consider a further three reductions by thread s above. We
assume that a write of k to p.l by some thread is visible. (We
apply structural reordering for readability and again omit auxiliary
processes. We assume that lock k has not yet been used before). Let
p :C5, q :Object, k :Lock.

〈s!q〉〈s!k:0〉〈s!p.f=q〉〈s!k:42〉
(s[] | t[sync p.l{val y=p.f; end y;}])

The environment records that lock k is held by thread s between
the actions 〈s!k:0〉 and 〈s!k:42〉. In particular, this justifies the
write 〈s!p.f=q〉 to a � field guarded by k. Moreover, the assign-
ment of q to a � field in 〈s!p.f=q〉 requires the s :*q+ effect in
the environment at the point of the write, mirroring the assignment
typing in terms described above.

Further reductions lead to the following process where the lock
k has been acquired by t, and q has been read from p.f then
substituted for z. Let p :C5, q :Object, k :Lock.

〈s!q〉〈s!k:0〉〈s!p.f=q〉〈s!k:42〉〈t!k:27〉
(s[] | t[{end q;} k.release();])

Here the typing of q via STAT-END requires that q be typed as
�Object within thread t, and, as before, this requires that the
environment provides *q+ for thread t. The lock release 〈s!k:42〉
and lock acquire 〈t!k:27〉 achieve this by transferring the effects
known to thread s (s :*q+) to lock k (k :*q+) at the release of k
by thread s, and transferring the effects for lock k to thread t
(t :*q+) at the acquisition of k by thread t. Thus we type the threads
in an environment including t :*q+. In this way, the type system
calculates communication of effects between threads following the
memory synchronization actions.

The typing of final fields necessarily differs from the typing of
fields guarded by locks because there are no memory synchroniza-
tion actions used when reading a final field. The key observation
in reading a final field is that the object reference through which
the final field is read must be � annotated. For example, in typing
the following process, (end x) is only permitted if x :� Object,
and this in turns requires s :*p+ in the typing environment for the
process. Let p :C6.

class C6 {final �Object f;}
s[val x=p.f; end x;]

This is expressed in the rule STAT-FINAL-READ.
Although writes to final fields may migrate via the structural

order, this invariant is sufficient because writes to final fields always
happen-before the begin representing construction of the object.
The � nature of a value q read from a final field p.f then follows
from transitivity of the happens-before relation between: (1) the
construction of q and the write to p.f; (2) the write to p.f and the
begin for p; (3) the begin for p and its receipt at � type; and (4)
receipt of p and the read p.f. This property demonstrates how hap-
pens-before relationships can be established for lockless traversal
of immutable portions of data structures whenever a happens-be-
fore relationship is established with the construction of the initial
object reference.

8. Related work and conclusion
We have already cited several related pieces of work in context
in the paper. We refer the reader to [Steinke and Nutt 2004] and
[Adve and Gharachorloo 1996] for surveys of memory models
for hardware architectures. Saraswat [2004] provides a framework
for operational semantics with relaxed memory models for typed
languages. Our prior work [Jagadeesan, Pitcher, and Riely 2010]
uses the techniques of Cenciarelli, Knapp, and Sibilio [2007] and
Boudol and Petri [2009] to accommodate the full expressiveness of
the JMM.

The � annotation uses objects to witness side-effects [Terauchi
and Aiken 2008]. However, in contrast to the large research on data
races, we only enforce the absence of read-write data races on our
witness objects and allow write-write data races. Happens-before
plays a key role in the static analysis of programs, e.g., vector-
clock algorithms for race detection [Flanagan and Freund 2009]
or the characterization of execution paths [Burckhardt, Kothari,
Musuvathi, and Nagarakatte 2010].

There has also been recent work on static analysis for weak
memory models [Ferrara 2008; Miné 2011; Alglave, Kroening,
Lugton, Nimal, and Tautschnig 2011] and provably correct com-
pilers targeting weak memory Sevcík, Vafeiadis, Nardelli, Jagan-
nathan, and Sewell [2011].

The study of relaxed memory models has hitherto focused on
the dynamic semantics of programs. This paper has focused on
static semantics. We have argued that correspondence assertions
are the correct formalism for reasoning about happens-before rela-
tions, and that these correspondences can be specified and validated
by enriching interfaces with notation for memory effects. Our tech-
niques apply to common data structures from java.util.con-
current, including both lock-based and non-blocking implemen-
tations.

Our analysis intentionally includes only a small fragment of the
type system of Abadi, Flanagan, and Freund [2006] for data race
detection. Fully integrating other techniques used there (such as
existential types in the form of ghost variables) and other existing
techniques, including analyses based on locality, confinement, lin-
earity, monotonicity, and effects is a topic of future research.

References
M. Abadi, C. Flanagan, and S. N. Freund. Types for safe locking: Static

race detection for Java. TOPLAS, 28(2):207–255, 2006.
S. V. Adve and K. Gharachorloo. Shared memory consistency models: A

tutorial. Computer, 29(12):66–76, 1996.
J. Alglave, D. Kroening, J. Lugton, V. Nimal, and M. Tautschnig. Soundness

of data flow analyses for weak memory models. In APLAS, 2011.
H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency memory

model. In PLDI ’08, pages 68–78, 2008.
G. Boudol and G. Petri. Relaxed memory models: an operational approach.

In POPL, pages 392–403, 2009.
S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A randomized

scheduler with probabilistic guarantees of finding bugs. In ASPLOS,
pages 167–178, 2010.

P. Cenciarelli, A. Knapp, and E. Sibilio. The Java memory model: Opera-
tionally, denotationally, axiomatically. In ESOP, pages 331–346, 2007.

P. Ferrara. Static analysis via abstract interpretation of the happens-before
memory model. In TAP, pages 116–133, 2008.

C. Flanagan and S. N. Freund. Fasttrack: efficient and precise dynamic race
detection. In PLDI, pages 121–133, 2009.

B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea. Java
Concurrency in Practice. Addison-Wesley Professional, 2005.

A. D. Gordon and A. Jeffrey. Typing correspondence assertions for com-
munication protocols. Theor. Comput. Sci., 300:379–409, 2003.

C. Hawblitzel. Linear types for aliased resources. Technical Report MSR-
TR-2005-141, Microsoft Research, 2005.

A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core
calculus for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

R. Jagadeesan, C. Pitcher, and J. Riely. Generative operational semantics
for relaxed memory models. In ESOP, 2010.

L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess program. IEEE Trans. Comput., 28(9):690–691, 1979.

D. Lea. The JSR-133 cookbook for compiler writers. http://gee.cs.
oswego.edu/dl/jmm/cookbook.html, 2008.

J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In POPL,
pages 47–57, 1988.

J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In POPL
’05, pages 378–391, 2005.

A. Miné. Static analysis of run-time errors in embedded critical parallel c
programs. In ESOP, pages 398–418, 2011.

V. A. Saraswat. Concurrent constraint-based memory machines: A frame-
work for Java memory models. In ASIAN, 2004.

J. Sevcík. Program Transformations in Weak Memory Models. PhD, Univ.
of Edinburgh, 2008.

J. Sevcík and D. Aspinall. On validity of program transformations in the
Java memory model. In ECOOP, pages 27–51, 2008.

J. Sevcík, V. Vafeiadis, F. Z. Nardelli, S. Jagannathan, and P. Sewell.
Relaxed-memory concurrency and verified compilation. In POPL, 2011.

P. Sewell. Global/local subtyping and capability inference for a distributed
π-calculus. In ICALP ’98, LNCS 1443, pages 695–706, 1998.

R. C. Steinke and G. J. Nutt. A unified theory of shared memory consis-
tency. J. ACM, 51(5):800–849, 2004.

T. Terauchi and A. Aiken. Witnessing side effects. TOPLAS, 30(3), 2008.
T. Y. C. Woo and S. S. Lam. Authentication for distributed systems. IEEE

Computer, 25:39–52, January 1992.
T. Zhao, J. Palsberg, and J. Vitek. Type-based confinement. J. Funct.

Program., 16:83–128, January 2006.

A. Syntax
Figure 5 collects the syntactic definitions from the text. The syntax dif-
fers from that of the body text only in that we have introduced speculative
actions and used these to define speculative processes. We have also intro-
duced a category for actions. For bookkeeping purposes, we also annotate
partially executed method bodies and synchronization blocks with the iden-
tity of the thread in which they occur.

Figure 6 includes the additional reduction rules for locks and conditions.

B. Well-formed processes
Define procs, mapping contexts to processes, as follows.

procs(J–K) = /0
procs(α C) = procs(C) procs((νq)C) = procs(C)

procs(>⇒A8φ⇒C) = procs(C) procs(A|C) = A] procs(C)
procs(>⇒C8φ⇒A) = procs(C) procs(C|A) = procs(C)] A

A process A is well-formed if it satisfies the following.

(1) If A is C
q
free s

y
, C

q
runnable s

y
or C

q
s[M]

y
then the following

hold.

(a) C is contiguous.
(b) There is no free s, runnable s or s[N] in procs(C).
(c) At most one of free t, runnable t or t[N] occurs in procs(C), for

any t.
(d) At most one p:D occurs in procs(C), for any p.
(e) If there is an action in act(C,s) with source t 6= s, then t[N] occurs

in procs(C).
(f) If p occurs in C or M, then p:D occurs in procs(C).
(g) If p:D occurs in procs(C) and f ∈ finals(D), then there exists

exactly one write action to p.f in act(C,s).

(2) Let thrds and objs return the names of the potential threads and
the objects of a process, respectively. For example thrds(free s) =
thrds(runnable s)= thrds(s[M])= {s} and objs(p:D)= objs(p:Atomic{v; j})
= objs(p:Lock{~s; j}) = {p}.

(a) In any subprocess B|B′, we have that objs(B) ∩ objs(B′) = /0,
thrds(B)∩ thrds(B′) = /0.

(b) In any subprocess αB, we have that thrd(α) ∈ thrds(B).
(c) In any subprocess>⇒B8φ⇒B′, we have that thrd(φ)∈ thrds(B)∩

thrds(B′).

Well-formedness is trivially true of the bootstrap process and is pre-
served by structural order and reduction.

Lemma 3. The bootstrap process is well-formed.

PROOF. Trivial. 2

Lemma 4. (a) Suppose A is well-formed and A= A′ then A′ is well-formed.
(b) Suppose A is well-formed and A→ A′ then A′ is well-formed.

PROOF. (a) follows by induction on the proof that A = A′. (b) follows by
induction on the proof that A→ A′. 2

C. Typing details
The reserved methods start and run have type “�; /0��Unit.”

The reserved classes have the following signatures. Recall that we elide
“�this;” from method interfaces. In the formal development, we take it
that cas returns null if the comparison fails, and the prior object otherwise.

class Object { }
class Atomic〈χ〉 {

χ Object get();
void set(χ Object v);
χ Object gas(χ Object v);
χ Object cas(Object oldv, χ Object newv);

}
class Lock { }
class Cond〈χ〉 {

χ Object await();
void signal(χ Object);

}

We now present the judgments, divided into five groups:
Judgements for satisfaction.

E
Φ (Guard satisfaction)
E
 ζ (Effect satisfaction)

Judgements for statics.

`D (Ok class declaration)
E `M in D (Ok method declaration)
E `F (Ok field declaration)
E `V : aT (Ok value)
E `M : aT . Z (Ok statement)

Judgements for dynamics.

E ` A (Ok process)
E ` σ . E ′ (Ok action)

Supporting judgements.

E ` � (Ok environment)
E ` T (Ok type)
E ` a (Ok annotation)
E ` F : T (Ok path)
E `Φ (Ok guard)
E ` ζ (Ok effect)

Judgements for contexts.

E ` C . E ′ (Ok context)

We identify environments up to reordering.

C.1 Judgements for satisfaction
Judgment E
Φ.

E 3 lock F
E
 F E
 true

E
Φ E
Ψ

E
Φ&&Ψ

E
Φ

E
Φ||Ψ

E
Ψ

E
Φ||Ψ

E,E ′{[F/x]}
Φ

E,x :aT,final x=F,E ′
Φ

Judgment E
 ζ .

E 3 ζ

E
 ζ

E,E ′{[F/x]}
 ζ

E,x :aT,final x=F,E ′
 ζ

C.2 Judgements for statics
Let F and G range over sets of field paths. Then any guard Φ can be written
in disjuntive normal as

∨
i Fi, where each set Fi is viewed as a conjunction

of field paths. We say that Φ must overlap with Ψ if Φ =
∨

i Fi, Ψ =
∨

j G j ,
and Fi ∩G j 6= /0 for all i, j.

Judgments `D and E `M in D.

∀i. ~χ `Fi
∀ j. ~χ `M j in d〈~χ〉
` class d〈~χ〉{ ~F ~M}

E,this :bD,~x :~a~T `M : aT
E ` aT m(bthis;~a~T ~x){M} in D

Judgment E `F .

E ` T
E ` T f;

E ` a E ` D
E ` final aD f;

E ` a E ` D E `Φ,Ψ
Φ must overlap with Ψ

E ` aD f rdguard Φ wrguard Ψ;

Judgment E `V : aT .

(VAL-SUB-TYPE)
E `V : aD
E `V : aObject

(VAL-SUB-ANN1)
E `V : aT
E `V : �T

(VAL-SUB-ANN2)
E `V : �T
E `V : aT

(VAL-BASE)
E ` � bv inhabits bt
E ` bv : �bt

bt ∈ BT ⊇ {Unit,Bool,Int} (Base type)
f ,g ∈ FN (Field name)

m ∈ MN ⊇ {start,run} (Method name)
d ∈ CN ⊇ {Object,Atomic,Lock,Cond} (Class name)
χ ∈ AV (Annotation variable)
γ ::=� | � (Ground annotation)

a,b,c ::= χ | γ (Annotation)
D ::= d〈~a〉 (Class type)

T,S ::= D | bt (Type)
D ::= class d〈~χ〉{ ~F ~M } (Class declaration)

M ::= aT m(bthis;~a~T ~x){M} (Method declaration)
F ::= T f; | final aD f; (Field declaration)

| aD f rdguard Φ wrguard Ψ;
Φ,Ψ ::= true | F | Φ&&Ψ | Φ||Ψ (Guard)
F,G ::=V | F.f (Field path)

bv ∈ BV ⊇ {unit,true,false,0,42} (Base value)
op ∈ OP ⊇ {==,+} (Base value operators)

x,y ∈ VN ⊇ {this} (Variable name)
p,q,s, t, ` ∈ ON (Object name)

v,w,u ::= null | bv | p (Ground value)
V,W,U ::= v | x (Open value)

M,N ::= return V; | val x = new D(~V); M (Statement)
| val x = W.m(~V); M | val x = op(~V); M
| val x = (D)V; M | end V; M
| val x = V.f; M | V.f = W; M
| if (V) {M} else {N} | val x = sync V {N} M
| val x = s{N} M | val x = s{N} `.release(); M

E ::= J–K | val x = s{E} M (Statement ctxt)
| val x = s{E} p.release(); M

α,β ::= 〈s!p.f=v〉 | 〈s!`: j〉 | 〈s!p〉 (Empirical Action)
φ ::= 〈s?p.f=v〉 (Speculative action)

σ ,τ ::= α | φ | sJ–K (Action)
A,B ::= p:D | `:Atomic{v; j} | `:Lock{~s; j} | p:Cond{`;~s;~t} (Process)

| α A | s[M] | A|B | (ν p)A | free p | runnable p
| >⇒A8φ⇒B

C ::= J–K | C|A | A|C | (ν p)C | α C (Process ctxt)
| >⇒C8φ⇒A | >⇒A8φ⇒C

ζ ,ξ ::= * p+ (Effect)
Z ::= {ζ1, . . . ,ζn} (Set of effects)
E ::= /0 | E,χ | E,x :aT | E, p :D | E,s returns aD (Environment)

| E,final x=F | E,lockV | E,s :lock `
| E,ζ | E,s :ζ | E, ` :ζ | E,onacq Φ ζ

Figure 5. Syntactic categories

(VAL-VARIABLE)
E ` � E 3 x :aT
E ` x : aT

(VAL-NULL)
E ` � E ` a E ` D
E ` null : aD

(VAL-OBJECT-�)
E ` � E 3 p :D
E ` p : �D

(VAL-OBJECT-�)
E ` � E 3 p :D E
 *p+
E ` p : �D

Judgment E `M : aT .

(STAT-NEW)

finals(D) =~f ftype(D.~f) = final~b~S E `~V : ~b~S
E,x : � D `M : aT
E ` val x = new D(~V); M : aT

(STAT-METHOD)

E `W : cD mtype(D.m) = c;~b~S � bS E `~V : ~b~S
E,x :bS `M : aT
E ` val x = W.m(~V); M : aT

(STAT-RETURN)
E `V : aT
E ` return V; : aT

(STAT-OPERATOR)

op has type ~bt � bt E `~V : ~�~bt
E,x : � bt `M : aT
E ` val x = op(~V); M : aT

(STAT-CAST)
E `V : bObject
E,x :bD `M : aT
E ` val x = (D)V; M : aT

(STAT-END)
E `V : �D
E `M : aT
E ` end V; M : aT

(STAT-RACING-READ)
E `V : �D ftype(D.f) = S
E,x : � S `M : aT
E ` val x = V.f; M : aT

(STAT-RACING-WRITE)
E `V : �D ftype(D.f) = S
E `W : �S E `M : aT
E `V.f = W; M : aT

(STAT-FINAL-READ)
E `V : cD ftype(D.f) = final bS
E,x :b′ S,final x=V.f `M : aT
E ` val x = V.f; M : aT

b′ =
{

b, if b = c
�, otherwise

(R-LOCK-NEW)

C
q
free ` | `:Lock | s[val x = new Lock(); M]

y

→ C
q
`:Lock{ /0;2} | 〈s!`〉 〈s!`:1〉 s[M{[/̀x]}]

y

(R-LOCK-CONTEXT)

C
q

s[N]
y
→ C′

q
s[N′]

y

C
q

s[val x = s{N } `.release();M]
y

→ C′
q

s[val x = s{N′} `.release();M]
y

(R-LOCK-ACQUIRE)

C
q
`:Lock{ /0; j} | s[val x = sync ` {N} M]

y

→ C
q
`:Lock{s; j} | 〈s!`: j〉 s[val x = s{N} `.release(); M]

y
C enables〈s!`: j〉

(R-LOCK-RELEASE)

C
q
`:Lock{s; j} | s[val x = s{↑v} `.release(); M]

y

→ C
q
`:Lock{ /0; j+2} | 〈s!`: j+1〉 s[M{[v/x]}]

y

(R-LOCK-ACQUIRE-REENTRANT)

C
q
`:Lock{~t ; j} | s[val x = sync ` {N} M]

y

→ C
q
`:Lock{~t] s; j} | s[val x = s{N} `.release(); M]

y
s ∈~t

(R-LOCK-RELEASE-REENTRANT)

C
q
`:Lock{~t] s; j} | s[val x = s{↑v} `.release(); M]

y

→ C
q
`:Lock{~t ; j} | s[M{[v/x]}]

y

(R-CONDITION-NEW)

C
q
free p | p:Cond | s[val x = new Cond(`); M]

y

→ C
q

p:Cond{`; /0; /0} | 〈s!p〉 s[M{[p/x]}]
y

C 3 `:Lock{ . . .}

(R-CONDITION-RELEASE)

C
q

p:Cond{`;~q ;Q} | `:Lock{~t; j} | s[val x = p.await(); M]
y

→ C
q

p:Cond{`;~q]~t;Q} | `:Lock{ /0; j+2} | 〈~t!`: j+1〉 s[val x = p.await(); M]
y

s ∈~t

(R-CONDITION-SIGNAL)

C
q

p:Cond{`;~q]~s;Q } | s[val x = p.signal(v); M]
y

→ C
q

p:Cond{`;~q ;Q] (~s,v)} | s[M{[unit/x]}]
y

C 3 `:Lock{~t; j}
s ∈~t

(R-CONDITION-ACQUIRE)

C
q

p:Cond{`;~q;Q] (~t,v)} | `:Lock{ /0; j} | s[val x = p.await(); M]
y

→ C
q

p:Cond{`;~q;Q } | `:Lock{~t; j} | 〈s!`: j〉 s[M{[v/x]}]
y

C enables〈s!`: j〉
s ∈~t

Figure 6. Reduction rules for locks and conditions (A→ B)

(STAT-GUARDED-READ)

E `V : �D ftype(D.f) = bS rdguard Φ E
Φ{[V/this]}
E,x :bS `M : aT
E ` val x = V.f; M : aT

(STAT-GUARDED-WRITE)

E `V : �D ftype(D.f) = bS wrguard Ψ E
Ψ{[V/this]}
E `W : bS
E `M : aT
E `V.f = W; M : aT

(STAT-IF)
E `V : �boolean
E `M : aT E ` N : aT
E ` if (V) {M} else {N} : aT

(STAT-LOCK)
E `V : �Lock E,lockV ` N : bS
E,x :bS `M : aT
E ` val x = sync V {N} M : aT

(STAT-LOCK-CONTEXT)
E,s returns bS ` N : bS E ` p : �Lock
E,s returns aT,x :bS `M : aT
E,s returns aT ` val x = s{N} p.release(); M : aT

(STAT-METHOD-CONTEXT)
E,s returns bS ` N : bS
E,s returns aT,x :bS `M : aT
E,s returns aT ` val x = s{N} M : aT

C.3 Judgements for dynamics
Define locks(s, E)= {lockV | s :lockV ∈E} and effects(s, E)= {ζ | s :ζ ∈
E}. Define E
s Φ to mean E,effects(s, E), locks(s, E)
 Φ, and similarly
for E s̀ V : aT and E s̀ M : aT .
Judgment E ` A.

(PROC-FREE)
E ` � E 3 p :D
E ` free p

(PROC-ALLOCATED)
E ` � E 3 p :D
E ` p:D

(PROC-RUNNABLE)
E ` � p ∈ dom(E)
E ` runnable p

(PROC-ATOMIC)
E ` � E 3 ` :Atomic
v ∈BV ∪dom(E)
E ` `:Atomic{v; j}

(PROC-LOCK)
E ` � E 3 ` :Lock
s ∈ dom(E)
E ` `:Lock{ j;s}

(PROC-CONDITION)
E ` � E 3 p :Cond
E 3 ` :Lock ~s∪~t ⊆ dom(E)
E ` p:Cond{`;~s;~t}

(PROC-THREAD)
E 3 s returns aT E s̀ M : aT
E ` s[M]

(PROC-PAR)
E ` A E ` B
E ` A|B

(PROC-NU)
E, p :D, p returns � Unit ` A
E ` (ν p)A

(PROC-ACTION)
E ` α . E ′ E ′ ` A
E ` α A

(PROC-SPECULATION)
E ` A E ` φ . E ′ E ′ ` B
E ` >⇒A8φ⇒B

(PROC-SPECULATION-SHAPE-ERROR)
s ∈ dom(E) E 3 p :D E ` A
Either ftype(D.f) = . . .bt . . . and ¬(v inhabits bt)
or ftype(D.f) = . . .D′ . . . and E 3 v :D′′ and D′′ 6= D′

E ` >⇒A8〈s?p.f=v〉⇒B

Judgment E ` σ . E ′.

(ACT-BEGIN)
s ∈ dom(E) p ∈ dom(E)
E ` 〈s!p〉 . E,s : * p+

(ACT-ACQUIRE)
s ∈ dom(E) E 3 ` :Lock
E ′ =

{
s :ζ

∣∣ E 3 onacq Φ ζ and E
s Φ
}

E ` 〈s!`: j〉 . E,E ′,s :lock `,s :effects(`, E)
j even

(ACT-RELEASE)
s ∈ dom(E) E 3 ` :Lock
E,s :lock ` ` 〈s!`: j〉 . E, ` :effects(s, E)

j odd

(ACT-�-RACING-FINAL-WRITE)
s ∈ dom(E) E 3 p :D ftype(D.f) ∈ {S,final � S}
E s̀ v : �S
E ` 〈s!p.f=v〉 . E

(ACT-�-FINAL-WRITE)
s ∈ dom(E) E 3 p :D ftype(D.f) = final � S
E s̀ v : �S
E ` 〈s!p.f=v〉 . E

(ACT-�-GUARDED-WRITE)
s ∈ dom(E) E 3 p :D ftype(D.f) =�S wrguard Ψ

E s̀ v : �S E 3 t : * p+ implies E
s Ψ{[p/this]}
E ` 〈s!p.f=v〉 . E

(ACT-�-GUARDED-WRITE)
s ∈ dom(E) E 3 p :D ftype(D.f) =�S wrguard Ψ

E s̀ v : �S E 3 t : * p+ implies E
s Ψ{[p/this]}
E ` 〈s!p.f=v〉 . E

(ACT-�-RACING-FINAL-GUARDED-SPECULATION)
s ∈ dom(E) E 3 p :D ftype(D.f) ∈ {S, . . .� S . . .}
E s̀ v : �S
E ` 〈s?p.f=v〉 . E

(ACT-�-FINAL-SPECULATION)
s ∈ dom(E) E 3 p :D ftype(D.f) = final � S
E s̀ v : �S
E ′ =

{
t : * v+

∣∣ E
t *p+
}

E ` 〈s?p.f=v〉 . E,E ′

(ACT-�-GUARDED-SPECULATION)
s ∈ dom(E) E 3 p :D ftype(D.f) =�S rdguard Φ

E s̀ v : �S
E ′ =

{
t : * v+

∣∣ E
t Φ{[p/this]}
}

E ` 〈s?p.f=v〉 . E,E ′,onacq (Φ{[p/this]}) (*v+)

C.4 Supporting judgments
Define envlocks(E) to return the set of values V such that lockV occurs in
E.

Judgment E ` �.

/0 ` �
E ` � χ /∈ dom(E)
E,χ ` �

E ` � E ` D p /∈ dom(E)
E, p :D ` �

E ` � E ` ζ

E,ζ ` �
E ` � E ` a E ` T x /∈ dom(E)
E,x :aT ` �
E ` � E ` x : �T E ` F : T
E,final x=F ` �
E ` � V ∈ dom(E) V /∈ envlocks(E)
E,lockV ` �
E ` � {s, `} ⊆ dom(E) ` /∈ envlocks(E)
E,s :lock `

E ` � p ∈ dom(E) E ` ζ

E, p :ζ

E ` � E `Φ E ` ζ

E,onacq Φ ζ

Judgment E ` T .

E ` bt
d〈~χ〉 is defined E `~a |~a|= |~χ|
E ` d〈~a〉

Judgment E ` a.

E `� E `�
χ ∈ dom(E)
E ` χ

Judgment E ` F : T .

E `V : �D
E `V : D

E ` F : D ftype(D.f) = final aT
E ` F.f : T

Judgment E `Φ.

E ` true
E ` F : D
E ` F

E `Φ E `Ψ

E `Φ&&Ψ

E `Φ E `Ψ

E `Φ||Ψ

Judgment E ` ζ .

p ∈ dom(E)
E ` *p+

C.5 Judgments for contexts
The following judgment is used in proofs to connect contexts and environ-
ments. See Appendix D.3.

Judgment E ` C . E ′.

(CONTEXT-HOLE)

E ` J–K . E

(CONTEXT-PAR-1)
E ` A E ` C . E ′

E ` C|A . E ′

(CONTEXT-PAR-2)
E ` A E ` C . E ′

E ` A|C . E ′

(CONTEXT-NU)
E, p :D, p returns � Unit ` C . E ′

E ` (ν p)C . E ′, p :D, p returns � Unit

(CONTEXT-ACTION)
E ` α . E ′ E ′ ` C . E ′′

E ` αC . E ′′

(CONTEXT-SPECULATION-INITIAL)
E ` C . E ′′ E ` φ . E ′ E ′ ` B
E ` >⇒C8φ⇒B . E ′′

(CONTEXT-SPECULATION-FINAL)
E ` A E ` φ . E ′ E ′ ` C . E ′′

E ` >⇒A8φ⇒C . E ′′

(CONTEXT-SPECULATION-INITIAL-SHAPE-ERROR)
s ∈ dom(E) E 3 p :D E ` C . E ′
Either ftype(D.f) = . . .bt . . . and ¬(v inhabits bt)
or ftype(D.f) = . . .D′ . . . and E 3 v :D′′ and D′′ 6= D′

E ` >⇒C8〈s?p.f=v〉⇒B . E ′

(CONTEXT-SPECULATION-FINAL-SHAPE-ERROR)
s ∈ dom(E) E 3 p :D E ` A
Either ftype(D.f) = . . .bt . . . and ¬(v inhabits bt)
or ftype(D.f) = . . .D′ . . . and E 3 v :D′′ and D′′ 6= D′

E ` >⇒A8〈s?p.f=v〉⇒C . E

D. Proofs
Soundness follows from progress and preservation. Recall the soundness
theorem.

Definition (1) (Stuck thread). Thread s is stuck in A if there exists C
q

s[EJMK]
y
=

A such that none of the following hold.

(1) s has terminated: M is a return statement and E= J–K;
(2) s can reduce: C

q
s[EJMK]

y
→ C′

q
s[M′]

y
for some C′, M′;

(3) s has had a class cast exception: M = val x = (D)v; M′ and C does not
contain subterm v:D; or

(4) s has had a null pointer exception: M is a method, end, read, write,
conditional or synchronization statement with target null.

(5) s is waiting for a lock, i.e., M is a synchronization statement or call to
Cond.await; 2

Theorem (2) (Soundness). Suppose the class table is well typed and
method Main.main () is defined. Suppose further that A is a speculation-
free process that is reachable from the bootstrap process, that is

(νm) m:Main | m[m.main();]→ ··· → A.

Then A does not contain a stuck thread.

PROOF. By inspection, the bootstrap process is well-formed and well-typed
under the empty environment.

As shown in Appendix B, well-formedness is preserved by reduction.
By Proposition 30, proved in Appendix D.7 below, well-typedness is pre-
served by reduction.

By Proposition 21, proved in Appendix D.5 below, no well-formed and
well-typed processes may contain a stuck thread. 2

To prove progress and preservation, we first introduce the notion of a
trap, i.e., a context that contains a bad speculation. In Appendix D.3, we
provide composition/decomposition results enabling us to go back and forth
between contexts and process. We relate the dynamic and static definitions
of happens-before in Appendix D.4. We state progress in Appendix D.5 and
give a brief outline of the proof. We prove preservation in two parts, treating
structural order in Appendix D.6 and reduction in Appendix D.7.

D.1 Traps
Define lockenv(E,C) as follows.

lockenv(E,J–K) = E

lockenv(E,C|A) = lockenv(E,C)
lockenv(E,A|C) = lockenv(E,C)

lockenv(E,(ν p)C) = lockenv(E,C)
lockenv(E,>⇒C8φ⇒A) = lockenv(E,C)
lockenv(E,>⇒A8φ⇒C) = lockenv(E,C)

lockenv(E,αC) = lockenv(E,C) if α nonlock

lockenv(E,〈s!`: j〉C) = lockenv(E,s :lock `,C) if j even

lockenv(E,s :lock `,〈s!`: j〉C) = lockenv(E,C) if j odd

Define lockenv(C)= lockenv(/0,C). Define C
s Φ as shorthand for lockenv(C)
s
Φ.

Definition 5 (Trap). A context C is a shape trap if C 3 p:D,

C= C′J>⇒A8〈s?p.f=v〉⇒C′′K
and either

• ftype(D.f) = . . .bt . . . and ¬(v inhabits bt), or
• ftype(D.f) = . . .D′ . . . and ¬(E 3 v :D′).

A context C=C′J>⇒A8〈s?p.f=v〉⇒C′′K is a trap if C3 p:D and either
it is a shape trap or

• ftype(D.f) = �T wrguard Ψ and there exists DJC′′′K = C′′ such that
(a) ¬(C′JDK
s Ψ), and (b) for every D′JD′′K = D, ¬(C′JD′K,s justifies
speculation p.f=v). 2

The last possibility indicates that s has given up the locks required to justify
the speculation and has not done the necessary write. A shape trap can
always be typed using PROC-SPECULATION-SHAPE-ERROR.

Lemma 6 (Trap). Suppose C is a trap, /0 ` CJs[M]K, and CJs[M]K→
C′Js[M′]K. Then, C′ is a trap.

PROOF. A trap can only be removed by R-SPECULATION-CLOSE. Assume
for the sake of contradiction that there exists a trap that can be removed
by R-SPECULATION-CLOSE. Thus, we have a speculation of the form
>⇒A8〈s?p.f=v〉⇒C such that C′

q
>⇒A8〈s?p.f=v〉⇒C

y
→ C′

q
C
y

and that (1) C′,s justifies speculation p.f=v. As (1) holds, we know that
there exists some i such that σi = 〈s!p.f=v〉. However, this would require
(2) (ftype(D.f) = . . .bt . . . and v inhabits bt) or (ftype(D.f) = . . .D′ . . . and
E 3 v :D′), which contradict the first two premises of the definition of a trap.

For the third possibility, note that by typing rules for actions, s must hold
the necessary locks to produce a justifying write action. s cannot acquire the
locks to do so after the speculation, since in this case the write cannot leave
the speculation (synchronization actions do not commute with speculation).
So s must have acquired the necessary locks before the speculation, and

must perform the write before releasing the locks, as s cannot acquire them
again and subsequently justify the speculation. But this case is exactly that
prohibited by the third clause of the definition.

Therefore, the original assumption is false, and the lemma holds. 2

D.2 Weakening/Strengthening
The proofs of the following lemmas follow standard lines.

Lemma 7 (Weakening). If E ` A, E,E ′ ` �, and E ′ contains no locks, then
E,E ′ ` A. Similarly for other judgments.

Corollary 8. (a) Assume p /∈ fn(σ) and E ` σ . E ′. Then, E, p :D ` σ .
E ′, p :D.

(b) Assume E ` A and E ` α . E ′ such that A doesn’t have any synchro-
nization actions that overlap with α . Then, E ′ ` A.

(c) Assume E ` A and E ` φ . E ′. Then, E ′ ` A. 2

Lemma 9 (Strengthening). If E,x :bS `M : aT , and x 6∈M, then E `M :
aT .

If E, p :D, p returns � Unit ` A, and p 6∈ A, then E ` A.

Corollary 10. Assume p /∈ fn(σ) and E, p :D ` σ . E ′, p :D,E ′′. Then,
E ` σ . E ′,E ′′. 2

Definition 11 (Sensible extension). Suppose environment E is well formed.
We define E ′ to be a sensible extension of E if E ′ is well formed and there
exists si, `i, F , and F ′ such that: E = F,s1 :lock `1, . . . ,sn :lock `n and
E ′ = FF ′. 2

Lemma 12 (Actions preserve wellformed environments). Suppose E `
σ . E ′ and E ` �. Then of E ′ ` �.

PROOF. By induction on E ` σ . E ′. 2

Lemma 13 (Actions sensibly extend environments). Suppose E ` σ .
E ′. E ′ is a sensible extension of E.

PROOF. We prove this by analysis of the E ` σ . E ′ judgments. We first
note that for ACT-�-RACING-FINAL-WRITE, ACT-�-GUARDED-WRITE,
ACT-�-FINAL-WRITE, ACT-�-GUARDED-WRITE, and ACT-�-RACING-
FINAL-GUARDED-SPECULATION the result is immediate since E ′ = E.
ACT-BEGIN,

ACT-�-GUARDED-SPECULATION are almost equally trivial since
they simply add to E, which clearly is a sensible extension. Letting
E = F,s :lock ` and

E ′ = F, ` :effects(s, E ′)
gives the desired result for ACT-RELEASE. 2

Lemma 14 (Transitivity of sensibly extended environments). Suppose
E ′ sensibly extends E and E ′′ sensibly extends E ′. Then, E ′′ sensibly ex-
tends E.

PROOF. Trivial from the definition of sensibly extended environments. 2

Lemma 15 (Sensible environment extensions preserve typability). If
E ′ sensibly extends E and E `M, then E ′ `M.

PROOF. This follows from the definition of sensible extensions and from
Lemma 7. 2

Note, the previous lemma doesn’t hold for processes since removal of
locks can invalidate it for processes.

D.3 Decomposition/Composition
Lemma 16 (Context decomposition). Suppose E ` CJAK and C is not a
shape trap. Then ∃E ′ such that E ` C . E ′ and E ′ ` A. Further, E ′ is a
sensible extension of E.

PROOF. We prove this by induction on the context, C. First, let us note that
as C is not a shape trap, we know by the definition of shape trap that the
context C′ derived from C in the proof below is also not a shape trap.

Case C= J–K: Immediate.
Case C= C′|B: By assumption and inversion, C′JAK|B must be typeable

by PROC-PAR, and therefore (1) E ` B and E ` C′JAK. By induction,
there exists E ′ such that (2) E ` C′ . E ′, (3) E ′ ` A, and (4) E ′ is
a sensible extension of E. The result holds by (3), (4), and applying
CONTEXT-PAR-1 to (1) and (2).

Case C= B|C′: Similar.
Case C= (ν p)C′: By assumption and inversion, (ν p)C′JAK must be ty-

peable by PROC-NU, giving (1) E, p :D, p returns � Unit ` C′JAK.
By induction, therefore, there exists E ′ such that (2) E, p :D, p returns �
Unit ` C′ . E ′, (3) E ′ ` A, and (4) E ′ is a sensible extension of E. The
result holds by (3), (4), and applying CONTEXT-NU to (2).

Case C= αC′: By assumption and inversion, αC′JAK must be typeable
by PROC-ACTION, giving (1) E ` α . E ′ and (2) E ′ ` C′JAK. Further,
as Lemma 13 holds, E ′ sensibly extends E. By induction on (2), there
exists (3) E ′′ that sensibly extends E ′ such that (4) E ′ `C′ . E ′′, and (5)
E ′′ ` A. By the transitivity of sensibly extended environments, (6) E ′′
sensibly extends E. By (6), (5), and applying CONTEXT-ACTION to (1)
and (4), we get the desired result.

Case C=>⇒C′ 8φ⇒B: By assumption and inversion, >⇒C′JAK8
φ⇒B must be typeable by PROC-SPECULATION, giving (1) E `C′JAK,
(2) E ` φ . E ′, and (3) E ′ ` B. By induction on (1), there exists (4) E ′′
that sensibly extends E such that (5) E `C′ . E ′′ and (6) E ′′ ` A. By (4),
(6), and applying CONTEXT-SPECULATION-INITIAL to (2), (3), and (5),
we get the desired result. It should be noted that PROC-SPECULATION-
SHAPE-ERROR and CONTEXT-SPECULATION-INITIAL-SHAPE-ERROR
cannot be applied in this case since we assumed that C was not a shape
trap.

Case C=>⇒B8φ⇒C′: By assumption and inversion,>⇒B8φ⇒C′JAK
must be typeable by PROC-SPECULATION, giving (1) E ` B, (2)
E ` φ . E ′, and (3) E ′ `C′JAK. Further, as Lemma 13 holds, E ′ sensibly
extends E. By induction on (3), there exists (4) E ′′ that sensibly extends
E ′ such that (5) E ′ `C′ . E ′′ and (6) E ′′ ` A. By the transitivity of sensi-
bly extended environments, (7) E ′′ sensibly extends E. By (7), (6), and
applying CONTEXT-SPECULATION-FINAL to (1), (2), and (5), we get
the desired result. It should be noted that PROC-SPECULATION-SHAPE-
ERROR and CONTEXT-SPECULATION-FINAL-SHAPE-ERROR cannot be
applied in this case since we assumed that C was not a shape trap.

This completes the possible cases for the context resulting in the lemma
being true. 2

Lemma 17 (Context composition). Suppose (a) E `C . E ′ and either (b)
C is a shape trap or (c) E ′ ` A. Then E ` CJAK.

PROOF. We prove this by induction on the context, C.

Case C= J–K: By assumption, C is clearly not a shape trap and so it must
be the case that (c) holds. The result is immediate from this.

In the remainder of the cases, it is the case that C could be a shape trap,
i.e. that (b) holds. If this is the case, then by definition of a shape trap, any
context, C′, derived from C would also be a shape trap. So for the remainder
of the proof we will assume that (b∗) if C is a shape trap, then C′ is a shape
trap holds.

Case C= C′|B: By applying inversion and CONTEXT-PAR-1 to E ` C .
E ′, we get (1) E ` B and (2) E ` C′ . E ′. We know by assumption
that either (b∗) or (c) holds. In either case, we can apply the inductive
hypothesis to (2) since either C′ is a shape trap or E ′ ` A. This gives (3)
E ` C′JAK. Applying PROC-PAR to (1) and (3) gives E ` C′JAK|B and
thus, we have the desired result.

Case C= B|C′: Similar except using CONTEXT-PAR-2 instead of CONTEXT-
PAR-1.

Case C= (ν p)C′: Since E ` C . E ′, and C = (ν p)C′, (a∗) E ` C .
E ′′, p :D, p returns � Unit holds, since p :D, p returns � Unit
must be part of E ′ by CONTEXT-NU. Applying inversion and CONTEXT-
NU to (a∗), we get (1) E, p :D, p returns � Unit `C′ . E ′′. We know
by assumption that either (b∗) or (c) holds. In either case, we can apply
the inductive hypothesis to (1) since either C′ is a shape trap or E ′ ` A.
This gives (2) E, p :D, p returns � Unit ` C′JAK. Applying PROC-
NU, we get (3) E ` (ν p)C′JAK, the desired result.

Case C= αC′: By applying inversion and CONTEXT-ACTION to (a), we
get (1) E ` α . E ′′ and (2) E ′′ ` C′ . E ′. We know by assumption
that either (b∗) or (c) holds. In either case, we can apply the inductive
hypothesis to (2) since either C′ is a shape trap or E ′ ` A. This gives
(3) E ′′ ` C′JAK. Applying PROC-ACTION to (1), and (3), we get (4)
E ` αC′JAK, the desired result.

Case C=>⇒C′ 8φ⇒B: There are two cases for which typing rule will
type (a).
Case CONTEXT-SPECULATION-INITIAL: By applying inversion and

CONTEXT-SPECULATION-INITIAL to (a), we get (1) E ` C′ . E ′,
(2) E ` φ . E ′′, (3) E ′′ ` B. We know by assumption that either (b∗)
or (c) holds. In either case, we can apply the inductive hypothesis
to (1) since either C′ is a shape trap or E ′ ` A. This gives (4)
E `C′JAK. Applying PROC-SPECULATION to (4), (2), and (3) gives
E ` >⇒C′JAK8φ⇒B, as desired.

Case CONTEXT-SPECULATION-INITIAL-SHAPE-ERROR: By ap-
plying inversion and CONTEXT-SPECULATION-INITIAL-SHAPE-
ERROR to (a), we get (1) s ∈ dom(E), (2) E 3 p :D, (3) E `
C′ . E ′, and (4) either ftype(D.f) = . . .bt . . . and ¬(v inhabits bt)
or ftype(D.f) = . . .D′ . . . and E 3 v :D′′ and D′′ 6= D′. We know by
assumption that either (b∗) or (c) holds. In either case, we can apply
the inductive hypothesis to (3) since either C′ is a shape trap or
E ′ ` A. This gives (5) E ` C′JAK. Applying PROC-SPECULATION-
SHAPE-ERROR to (1), (2), (5), and (4) gives E `>⇒C′JAK8φ⇒B,
as desired.

Since CONTEXT-SPECULATION-INITIAL and CONTEXT-SPECULA-
TION-INITIAL-SHAPE-ERROR are the only two judgments which could
type (a) under the current assumption of what shape C has and the
lemma holds for both of these judgments, then the lemma holds for this
case.

Case C=>⇒B8φ⇒C′: There are two cases for which typing rule will
type (a).
Case CONTEXT-SPECULATION-FINAL: By applying inversion and

CONTEXT-SPECULATION-FINAL to (a), we get (1) E ` B, (2) E `
φ . E ′′, and (3) E ′′ ` C′ . E ′. We know by assumption that either
(b∗) or (c) holds. In either case, we can apply the inductive hy-
pothesis to (3) since either C′ is a shape trap or E ′ ` A. This gives
(4) E ′′ ` C′JAK. Applying PROC-SPECULATION to (1), (2), and (4)
gives E ` >⇒B8φ⇒C′JAK, as desired.

Case CONTEXT-SPECULATION-FINAL-SHAPE-ERROR: By apply-
ing inversion and CONTEXT-SPECULATION-FINAL-SHAPE-ERROR
to (a), we get (1) s ∈ dom(E), (2) E 3 p :D, (3) E ` B, (4)
either ftype(D.f) = . . .bt . . . and ¬(v inhabits bt) or ftype(D.f) =
. . .D′ . . . and E 3 v :D′′ and D′′ 6= D′. Applying PROC-SPECULA-
TION-SHAPE-ERROR to (1), (2), (3), and (4) gives E ` >⇒B8
φ⇒C′JAK, as desired.

Since CONTEXT-SPECULATION-FINAL and CONTEXT-SPECULATION-
FINAL-SHAPE-ERROR are the only two judgments which could type (a)
under the current assumption of what shape C has and the lemma holds
for both of these judgments, then the lemma holds for this case.

As we have proved all cases, we have proved the lemma. 2

D.4 Happens-before
In non-trap processes, the type system exactly captures the happens-before
relation.

Lemma 18 (Happens-before). Suppose /0 ` C . E.

(a) If 〈t!p〉<C,s
hb sJ–K then E 3 (s : * p+).

(b) If C is not a trap and E 3 (s : * p+) then 〈t!p〉<C,s
hb sJ–K.

PROOF. By induction on C. The interesting cases are for speculation, and
these follow from the definitions of trap and of justified speculation. 2

Lemma 19 (Justified read). Suppose (a) /0 ` C . E, (b) C,s justifies read
p.f=v and (c) E 3 p :D.

• If (d1) ftype(D.f) = . . .�T . . . then either (f1) C is a shape trap or (g1)
E s̀ v : �T .

• If (d2) ftype(D.f) = final � T then either (f2) C is a shape trap or (g2)
E s̀ v : �T .

• If (d3) ftype(D.f) =�T rdguard Φ and (e3) E
s Φ, then either (f3) C
is a shape trap or (g3) E s̀ v : �T .

PROOF. The first case is immediate from the definitions.
The other cases are immediate unless the read is justified by a specula-

tion. Then we must show that E 3 (s : * v+).
In the case of a final field, the result is immediate from the typing rule

for final speculations.
In the case of a lock-protected field, the result follows from the fact that

s holds the locks necessary to read the field. By the typing rule for lock-
protected speculations (and lock acquisition) the effect is guaranteed to be
there. 2

It is worth noting that the environment E ′ =
{

t : * v+
∣∣ E
t Φ{[p/this]}

}
in ACT-�-GUARDED-SPECULATION could be restricted to t 6= s, since s
cannot read the speculated value. But this is not necessary.

For a speculation about a write by s on a lock-protected field, it is only
possible for the speculation to finalize if it is justified before the speculation
or if s holds the necessary locks at the point of speculation. If s acquires
a lock inside a speculation, then the commuting rules do not allow any
subsequent write to justify the speculation.

Lemma 20 (Justified speculation). Suppose /0 `C . E and E ` φ . E ′ and
E ′ ` A. If C,s justifies speculation φ then E ` A.

PROOF. In general, E ′ extends E by adding immediate and latent effects.
Otherwise the environments are the same.

For final fields, only one write can possibly justify the speculation, and
this write happens-before *p+. If thread writing p.f had *v+, then so will
any thread that has *p+.

For lock-protected fields, the justifying write must occur while holding
*v+ and the relevant write locks. Any reader must have the corresponding
read locks. Since these must overlap, one can reason, via the definition of
/0 ` C . E, that any occurrence of v has the required effect. 2

D.5 Progress
Recall the definition of a stuck thread

Definition (1) (Stuck thread). Thread s is stuck in A if there exists C
q

s[EJMK]
y
=

A such that none of the following hold.
(1) s has terminated, i.e, M is a return statement and E= J–K;
(2) s can reduce, i.e.; C

q
s[EJMK]

y
→ C′

q
s[M′]

y
for some C′ and M′;

(3) s is waiting for a lock, i.e., M is a synchronization statement or call to
Cond.await;

(4) s has had a class cast exception, i.e., M = val x = (D)v; M′ and C does
not contain subterm v:D; or

(5) s has had a null pointer exception, i.e., M is a method, end, read, write,
conditional or synchronization statement with target null. 2

Proposition 21 (Progress). If A contains no speculation and /0 ` A then A
contains no stuck thread.

PROOF. For a contradiction, suppose that s is stuck in A and A=C
q

s[M]
y

.
Note that C cannot be a trap, since it contains no speculation.
Applying decomposition and inversion to the supposition, we have that

there exists E, a and T such that (1) /0 ` C . E and (2) E s̀ M : aT . By
induction on judgment (2), one can show a contradiction for any M.

The only unusual case is R-END, and this follows from Lemma 18. 2

D.6 Structural order preserves typing
We begin with some lemmas.

Lemma 22 (Action permutation). Let ~σ .~τ where sJ–K /∈ ~σ and sJ–K /∈~τ
and E ` ~σ . E ′. Then, E `~τA.

PROOF. By induction on the definition of the . precongruence. 2

Lemma 23 (Action-speculation permutation). If φα . αφ or thrd(φ) 6=
thrd(α), and E ` φ . E ′, E ′ ` α . E ′′′, and E ` α . E ′′, then E ′′ ` φ . E ′′′.

PROOF. This can be proven by induction on the . precongruence and a case
analysis of α and φ . 2

Lemma 24 (Substitution). 1. If E,x :D `M : C and E ` v : D, then E `
M{[v/x]} : C .

2. Assume E ` p : cD, mtype(D.m) = c;~b~S � bS, E ` ~V : ~b~S, E,x :bS `
M : aT , E `W : bS, and W is the result of p.m(~V). Then E `M{[W/x]} :
aT .

3. Assume E ` p : cD, mtype(D.m) = c;~b~S � bS, mbody(D.m) = λ~y.M,
and E `~V : ~b~S. Then E `M{[p/this]}{[~V/~y]} : aT .

PROOF. Each of these can be proved using induction on E `M : C 2

We now explicitly state the rules for defining A= B as the least precon-
gruence on processes that satisfy the axioms in Equation 6.1. They are as
follows:

(S-REFLEXIVITY)

A= A

(S-TRANSITIVITY)
A= A′ A′ = B
A= B

(S-CTXT-ACTION)
A= A′

α A= α A′

(S-CTXT-PAR1)
A= A′

A|B= A′|B

(S-CTXT-PAR2)
B= B′

A|B= A|B′

(S-CTXT-NU)
A= A′

(ν p)A= (ν p)A′

(S-CTXT-SPECULATION1)
A= A′

>⇒A8φ⇒B=>⇒A′ 8φ⇒B

(S-CTXT-SPECULATION2)
B= B′

>⇒A8φ⇒B=>⇒A8φ⇒B′

Proposition 25 (Structural order preserves typing). If E ` A, and A= B,
then E ` B.

PROOF. Assume that E ` A, and A= B. We prove this by induction on the
structural order rules found in Equation 6.1 and on the ones explicitly stated
above. For each case, we then use induction on the typing rules which are
valid for that structural order.

Case S-REFLEXIVITY:
Assume that A = B. Therefore, the results holds trivially.

Case S-TRANSITIVITY:
By inversion on S-TRANSITIVITY, we get (1) A= A′ and (2) A′ = B for
all A′. By the induction hypothesis on (1) and since E ` A, (3) E ` A′.
Now this, together with the induction hypothesis on (2), means that (4)
E ` B, as desired.

Case S-CTXT-. . . :
In each case, the result follows using inversion and induction.

Case S-NU-FREE (→):
Assume that B = A|(ν p)(p:d〈~γ〉|free p). We can further safely as-
sume that (a) d〈~χ〉 is defined, (b) p /∈ dom(E), and that (c) |~γ| = |~χ|.
Otherwise, we can simply pick a different p and d which do satisfy
these assumptions. We know by assumption that E ` A, so (1) E ` �.
By the rules for typing E ` � and E ` �, we know that (2) E ` ~γ .
By (a), (2), and (c), we know that (3) E ` d〈~γ〉 holds. As we have
(1), (3), and (b), we know that (4) E, p :d〈~γ〉, p returns � Unit ` �
holds. Further, by applying PROC-FREE to (1) and (4), we have (5)
E, p :d〈~γ〉, p returns � Unit ` free p. We can also apply PROC-
ALLOCATED to (1) and (4), giving us (6) E, p :d〈~γ〉, p returns �
Unit ` p :d〈~γ〉. By applying PROC-PAR to (6) and (5), we get (7)
E, p :d〈~γ〉, p returns � Unit` (p:d〈~γ〉|free p). By applying PROC-
NU to (7), we get (8) E ` (ν p)(p:d〈~γ〉|free p). Finally, by applying
PROC-PAR to E ` A and (8), we get (9) E ` A|(ν p)(p:d〈~γ〉|free p),
as desired.

Case S-NU-FREE (←):
Assume that A = A′|(ν p)(p:d〈~γ〉|free p) and B = A′. We know by
assumption that E ` A. By applying inversion and PROC-PAR on E ` A,
we get (1) E ` A′ and (2) E ` (ν p)(p:d〈~γ〉|free p). The result holds
from (1).

Case S-NU-PAR (→):
Assume A = (ν p)(B′|A′) and B = B′|((ν p)A′). By inversion and
PROC-NU on E ` A, we have (1) E, p :D, p returns � Unit ` (B′|A′).
By inversion and PROC-PAR on (1), we have (2) E, p :D, p returns �
Unit ` B′ and (3) E, p :D, p returns � Unit ` A′. Now, by assump-
tion of S-NU-PAR, we know that p /∈ fn(B′). Thus, we can apply Corol-
lary 10 to (2), giving (4) E ` B′. By applying PROC-NU to (3), we
get (5) E ` ((ν p)A′). Applying PROC-PAR to (4) and (5) gives E `
B′|((ν p)A′), as desired.

Case S-NU-PAR (←):
Similar except use Corollary 8 instead of Corollary 10.

Case S-PAR-PAR (→):
Case S-PAR-PAR (←):
Case S-PAR (→):
Case S-PAR (←):

Trivial through application of inversion and PROC-PAR.
Case S-NU-NU (→):
Case S-NU-NU (←):

Trivial through application of inversion and PROC-NU, Lemma 7, Corol-
lary 8, Lemma 9, and Corollary 10.

Case S-NU-PREFIX (→):
Let A = (ν p)αA′ and B = α(ν p)A′ such that p /∈ fn(α). Applying
inversion and PROC-NU to E ` A gives (1) E, p :D, p returns �
Unit ` αA′. Applying inversion and PROC-ACTION to (1) gives (2)
E, p :D, p returns � Unit`α . E ′, where E ′=E, p :D, p returns �
Unit,E ′′, and (3) E ′ ` A′. Applying Corollary 8 followed by Corol-
lary 10 to (2) gives (4) E ` α . E,E ′′, which in turn means that (5) E ′ =
E,E ′′, p :D, p returns � Unit. Thus, we have (6) E,E ′′, p :D, p returns �
Unit ` A′, by substituting in for E ′ in (3). Applying PROC-NU to (6)
gives (7) E,E ′′ ` (ν p)A′. Applying PROC-ACTION on (4) and (7) gives
E ` α(ν p)A′, the desired result.

Case S-NU-PREFIX (←):
Similar.

Case S-PREFIX-PAR:
Let A = A′|(αA′′) and B = α(A′|A′′). We know by applying inversion
and PROC-PAR to A that (1) E ` A′ and (2) E ` αA′′ hold. Applying
inversion and PROC-ACTION to (2) gives (3) E `α . E ′ and (4) E ′ ` A′′.
We know by the well-formedness of A that C is contiguous. Thus, we
know that if α is a synchronization action, then it can’t overlap with
A. Thus, by Corollary 8, we have (5) E ′ ` A. Applying inversion and
PROC-PAR to (5) gives (6) E ′ ` A′ and (7) E ′ ` αA′′. Applying PROC-
PAR to (6) and (4) gives (8) E ′ ` A′|A′′. Applying PROC-ACTION to (3)
and (8) gives (9) E ` α(A′|A′′), as desired.

Case S-PREFIX:
Let A =~αA′ and B = ~βA′ such that ~α . ~β . We know by assumption that
E ` A. By successive applications of inversion and PROC-ACTION, we
have (1) E ` ~α . E ′ and (2) E ′ ` A′. By applying Lemma 22, we have
(3) E ` ~βA′, as desired.

Case S-PREFIX-SPECULATION:
Let A =>⇒(αA′)8φ⇒(αA′′) and B = α(>⇒A′ 8φ⇒A′′) such that
(1) φα . αφ or (2) thrd(φ) 6= thrd(α). As E ` A, there are two typ-
ing rules which can be applied here, PROC-SPECULATION and PROC-
SPECULATION-SHAPE-ERROR. We consider both cases to complete the
proof of this case.

Case PROC-SPECULATION:
Assume that PROC-SPECULATION types E ` A. By inversion and
PROC-SPECULATION, we have (3a) E ` αA′ , (4a) E ` φ . E ′, and
(5a) E ′ ` αA′′. Applying inversion and PROC-ACTION to (3a) gives
(6a) E ` α . E ′′ and (7a) E ′′ ` A′. Applying inversion and PROC-
ACTION to (5a) gives (8a) E ′ ` α . E ′′′ and (9a) E ′′′ ` A′′. Applying
Lemma 23 to (1), (2), (4a), (8a), and (6a) gives (11a) E ′′ ` φ . E ′′′.
Applying PROC-SPECULATION to (7a), (11a), and (7a) gives (12a)
E ′′ ` >⇒A′ 8φ⇒A′′. Applying PROC-ACTION to (6a) and (12a)
gives E ` α(>⇒A′ 8φ⇒A′′), as desired.

Case PROC-SPECULATION-SHAPE-ERROR:
Assume that PROC-SPECULATION-SHAPE-ERROR types E ` A.

Thus, φ = 〈s?p.f=v〉. By inversion and PROC-SPECULATION-
SHAPE-ERROR, we have (3b) s ∈ dom(E), (4b) E 3 p :D, (5b)
either (ftype(D.f) = . . .bt . . . and ¬(v inhabits bt)) or (ftype(D.f) =
. . .D′ . . . and E 3 v :D′′ and D′′ 6= D′) and (6b) E ` αA′. Applying
inversion and PROC-ACTION to (6b) gives (7b) E ` α . E ′ and (8b)
E ′ ` A′. It is clear that if (3b), (4b), and (5b) hold, then (9b) s ∈
dom(E ′), (10b) E ′ 3 p :D, and (11b) either (ftype(D.f) = . . .bt . . .
and ¬(v inhabits bt)) or (ftype(D.f) = . . .D′ . . . and E ′ 3 v :D′′ and
D′′ 6= D′) also must hold. Therefore, we can apply PROC-SPECU-
LATION-SHAPE-ERROR to (9b), (10b), (8b), and (11b) to get (12b)
E ′ ` >⇒A′ 8φ⇒A′′. Applying PROC-ACTION to (7b) and (12b)
gives (13b) E ` α(>⇒A′ 8φ⇒A′′), as desired.

Since we showed that for both cases of typing E ` A results in E ` B
being typed, we have shown that this case is satisfied as well.

Case S-NU-SPECULATION (→):

Let A = (ν p)(>⇒A′ 8φ⇒A′′) and B =>⇒((ν p)A′)8φ⇒((ν p)A′′)
such that p /∈ fn(φ). Applying inversion and PROC-NU to E ` A gives
(1) E, p :D, p returns � Unit ` >⇒A′ 8φ⇒A′′. There are two typ-
ing rules which can be applied here, PROC-SPECULATION and PROC-
SPECULATION-SHAPE-ERROR. We consider both cases to complete the
proof of this case.

Case PROC-SPECULATION:
Applying inversion and PROC-SPECULATION to (1) gives (2a)
E, p :D, p returns � Unit ` A′, (3a) E, p :D, p returns �
Unit` φ . E, p :D, p returns � Unit,E ′, and (4a) E, p :D, p returns �
Unit,E ′ ` A′′. Applying Corollary 8 followed by Corollary 10 to
(3a) gives (5a) E ` φ . E,E ′ and (6a) E, p :D, p returns � Unit `
φ . E,E ′, p :D, p returns � Unit, which means that (7a) E, p :D,
p returns � Unit,E ′ = E,E ′, p :D, p returns � Unit holds
as well. Substituting in (4a) gives (8a) E,E ′, p :D, p returns �
Unit ` A′′. Applying PROC-NU to both (2a) and (8a) gives (9a)
E ` (ν p)A′ and (10a) E,E ′ ` (ν p)A′′, respectively. Applying
PROC-SPECULATION to (9a), (5a), and (10a) gives (11a) E `
>⇒((ν p)A′)8φ⇒((ν p)A′′), as desired.

Case PROC-SPECULATION-SHAPE-ERROR:
Applying inversion and PROC-SPECULATION-SHAPE-ERROR to (1)
where φ = 〈s?q.f=v〉 gives (2a) s ∈ dom(E, p :D, p returns �
Unit), (3a) E, p :D, p returns � Unit 3 q :D with p 6= q, (4a)
either (ftype(D.f) = . . .bt . . . and ¬(v inhabits bt)) or (ftype(D.f) =
. . .D′ . . . and E, p :D, p returns � Unit 3 v :D′′ and D′′ 6= D′) and
(5a) E, p :D, p returns � Unit ` A′. Applying PROC-NU to (5a)
gives (6a) E ` (ν p)A′. Applying PROC-SPECULATION-SHAPE-ER-
ROR to (2a), (2a), (6a), and (4a) gives (7a) E ` >⇒((ν p)A′)8
φ⇒((ν p)A′′), as desired. Note, we can just put in the (ν p) before
A′′ in the speculation since the speculation side is not typed by
PROC-SPECULATION-SHAPE-ERROR.

Case S-NU-SPECULATION (←):
Similar, but reversing the steps.

Case S-PAR-SPECULATION (→):
Similar to the S-NU-SPECULATION (→) case with the exception of
using PROC-PAR instead of PROC-NU.

Case S-PAR-SPECULATION (←):
Similar to the S-NU-SPECULATION (←) case with the exception of
using PROC-PAR instead of PROC-NU.

As we have proved all cases, we have proved the proposition. 2

D.7 Reduction preserves typing
Lemma 26 (Shape traps preserve typability). If (1) /0 ` CJs[M]K, (2) C
is a shape trap, and (3) CJs[M]K→ C′Js[M′]K, then /0 ` C′Js[M′]K.

PROOF. Let us assume (1), (2), and (3). Then we know that C′ is also a
shape trap since traps can never be removed. So, by the definition of a shape
trap, /0 ` D . E and C′ = DJ>⇒A′ 8〈s?p.f=v〉⇒D′K where (4) >⇒A′ 8
〈s?p.f=v〉⇒D′ is a shape trap with respect to E. By the definition of a
shape trap on (4), (5) E `>⇒A′ 8〈s?p.f=v〉⇒D′. By applying CONTEXT-
SPECULATION-FINAL-SHAPE-ERROR to the premises gotten by applying
inversion and PROC-SPECULATION-SHAPE-ERROR to (5), we have (6) E `
>⇒A′ 8〈s?p.f=v〉⇒D′ . E. Combining (6) with /0 ` D . E, gives (7)
/0 ` C′ . E. By applying Lemma 17 on (7) and the fact that C′ is a shape
trap, we get (8) /0 ` C′Js[M′]K, as desired. 2

Lemma 27. (Thread reduction introduces a shape trap or sensibly ex-
tends the environment). If /0 ` C

q
s[M]

y
, C
q

s[M]
y
→ C′

q
s[M′]

y
, and

/0 ` C . E, then either (/0 ` C′ . E ′ and E ′ sensibly extends E) or C′ is a
shape trap.

PROOF. If C is a shape trap, we are done since C′ must also be a shape trap
since traps can never be removed. If a shape trap is introduced to C′ during
the reduction step, we are again done. Therefore the interesting part of the
proof is when C and C′ are not shape traps. This can be proven by induction
on reduction rules found in Equation 6.1, Equation 6.1, and Figure 6. 2

Lemma 28 (Thread return type existence). If E ` s[M], then E =E ′,s returns aT ,
for some E ′.

PROOF. Assume E ` s[M]. Applying inversion and PROC-THREAD gives
(1) E 3 s returns aT and (2) E s̀ M : aT . Since we have (1) we can
reorder E so that E = E ′,s returns aT , as desired. 2

Lemma 29 (Thread return types). If (νs) ∈C, then if E `C . E ′,s returns aT ,
then E ` C . E ′,s returns bS.

If (νs) /∈ C, then if E,s returns aT ` C . E ′,s returns aT , then
E,s returns bS ` C . E ′,s returns bS.

PROOF. The first case follows from CONTEXT-NU. The second case follows
from the fact that C doesn’t modify the return type of a thread. 2

We now state and prove preservation, also known as subject reduction.

Proposition 30 (Preservation). If /0 ` A, and A→ B, then /0 ` B.

PROOF. Assume that (1) /0 ` A and (2) A→ B. We prove this by induction
on the reduction rules found in Equation 6.1, Equation 6.1, and Figure 6.
That is, we prove this by induction on (2). We start with the case of R-
STRUCTURAL-ORDER.

Case R-STRUCTURAL-ORDER: Assume that R-STRUCTURAL-ORDER
satisfies (2). Then by assumption, we know that (3) A= A′, (4) A′→ B′,
and (5) B′ = B. Applying Proposition 25 on (1) and (3) gives (6) /0 ` A′.
Applying the inductive hypothesis on (6) and (4) gives (7) /0 ` B′. Ap-
plying Proposition 25 on (7) and (5) gives (8) /0 ` B, as desired.

We partition the remaining cases into two sets that we need to con-
sider. One set of cases is comprised of the reduction rules which modify
the context while reducing, namely R-METHOD-CONTEXT, and R-LOCK-
CONTEXT. The other set consists of all remaining cases and do not modify
the context. Let us first consider the cases for the rules which modify the
context, as they are more interesting.

Case R-METHOD-CONTEXT: Assume that R-METHOD-CONTEXT satis-
fies (2). So, (3) A=C

q
s[val x = s{N}M]

y
, (4) B=C′

q
s[val x = s{N′}M]

y
.

By the equalities of (3) and (4) combined with (2), we have (5)
C
q

s[val x = s{N}M]
y
→C′

q
s[val x = s{N′}M]

y
, and (6) C

q
s[N]

y
→

C′
q

s[N′]
y

. Now there are two cases to consider. Either C is a shape
trap or it isn’t. If it is, then by Lemma 26, /0 ` C′

q
s[N′]

y
. Now since

B = C′
q

s[N′]
y

, we have /0 ` B, as desired. Thus, if C is a shape trap,
we are done. We proceed assuming that C is not a shape trap.
By applying Lemma 16 on (1) and (3), we have (7) /0 ` C . E, (8) E `
s[val x = s{N}M], and (9) E is a sensible extension of /0. By applying
inversion and PROC-THREAD on (8), we get (10) E 3 s returns aT
and (11) E s̀ val x = s{N}M : aT . Let (12) E ′,s returns aT be
a reordering of E. Further, by using inversion and STAT-METHOD-
CONTEXT on (11), we know that (13) E ′,s returns bS s̀ N : bS and
(14) E ′,s returns aT,x :bS s̀ M : aT . Using PROC-THREAD on (13)
gives (15) E ′,s returns bS ` s[N]. Substituting (12) into (3), gives
(16) /0 ` C . E ′,s returns aT . Now it must be the case that (νs) ∈ C
since it clearly can’t be in /0.
Applying Lemma 29 to (16) gives (17a) /0 ` C . E ′,s returns bS.
Applying Lemma 17 on (17a) and (15) gives (18a) /0 ` C

q
s[N]

y
. By

applying the inductive hypothesis on (18a), (6), we know that (19a)
/0 ` C′

q
s[N′]

y
. Applying Lemma 16 to (19a) gives (20a) /0 ` C′ . F ,

(21a) F ` s[N′], and (22a) F sensibly extends /0. Now as (νs) ∈ C,
(νs) ∈ C′, allowing us to apply Lemma 29 to (20a) giving (23a)
/0 ` C′ . F ′,s returns bS. Combining (21a) and (23a), we get (24a)
F ′,s returns bS ` s[N′]. Applying inversion and PROC-THREAD
to (24a) gives (25a) F ′,s returns bS 3 s returns bS and (26a)
F ′,s returns bS s̀ N′ : bS. Applying Lemma 27 to (1), (5), and
(7) gives either ((23a) and (28a) F ′,s returns bS sensibly extends
E) or C′ is a shape trap. Now we have already shown that if C′ is a
shape trap, then we are done. So let us consider (23a) and (28a) to
hold. Applying Lemma 15 and Lemma 29 to (23a), (28a), and (14) give
(29a) /0 ` C′ . F ′,s returns aT , and (30a) F ′,s returns aT,x :bS s̀
M : aT . Applying STAT-METHOD-CONTEXT to (26a) and (30a) gives
(31a) F ′,s returns aT s̀ val x = s{N′}M : aT . Applying PROC-
THREAD to F ′,s returns aT 3 s returns aT and (31a) gives (32a)
F ′,s returns aT ` s[val x = s{N′}M]. Applying Lemma 17 to (29a)
and (32a) gives (33a) /0 ` C′

q
s[val x = s{N′}M]

y
. Using the equality

of (4) gives /0 ` B, as desired.

Case R-LOCK-CONTEXT: Similar. The only differences are the use of
STAT-LOCK-CONTEXT instead of STAT-METHOD-CONTEXT and the
handling of the additional assumption from the judgment, namely that
E ′′,s returns aT ` p : �Lock. Of course, this can be handled in the
same way that (14) E ′,s returns aT,x :bS s̀ M : aT from the previous
case is handled.

We now have to prove the proposition is true for the remaining cases.
Assume that one of the remaining reduction rules satisfies (2). Let us
assume for this case that (3) A = CJA′K and (4) B = C′JB′K. By inspecting
the rule for this case, we know that C = C′. Thus, we have (5) B = CJB′K.
Now there are two cases to consider. Either C is a shape trap or it isn’t.
If it is, then by the fact that Lemma 26 holds, /0 ` CJB′K. Now since (5)
B=CJB′K holds, we have /0`B, as desired. Thus, if C is a shape trap, we are
done. Since we arbitrarily chose the reduction rule from the remaining ones,
we know that this is the case for all of them. So for each of the remaining
cases, we proceed assuming that C is not a shape trap. We consider each
case in turn beginning with the most interesting ones.

Case R-SPECULATION-CLOSE: Assume that R-SPECULATION-CLOSE
satisfies (2). Let us assume (3) A = CJ>⇒A′ 8〈s?p.f=v〉⇒B′K and
(4) B = CJB′K. By the equalities of (3) and (4) combined with (2), we
have (5) C

q
>⇒A′ 8〈s?p.f=v〉⇒B′

y
→ C

q
B′
y

, and (6) C,s justifies
speculation p.f = v. By applying Lemma 16 to (1), we know that (7)
/0`C . E and (8) E `>⇒A′ 8〈s?p.f=v〉⇒B′. By inversion and PROC-
SPECULATION on (8), we have (9) E ` A′, (10) E ` 〈s?p.f=v〉 . E ′, and
(11) E ′ ` B′. We note that PROC-SPECULATION-SHAPE-ERROR cannot
be applied here since (6) holds. Applying Lemma 20 to (6), (10), and
(11) gives (12) E ` B′. Applying Lemma 17 to (12) and (11) gives (13)
/0 ` CJB′K. By the equality of (4), we know (14) /0 ` B, as desired.

Case R-SPECULATION-OPEN: Assume that R-SPECULATION-OPEN sat-
isfies (2). Let us assume (3) A = CJA′K and (4) B = CJ>⇒A′ 8
〈s?p.f=v〉⇒A′K . By the equalities of (3) and (4) combined with (2),
we have (5) C

q
A′
y
→ C

q
>⇒A′ 8〈s?p.f=v〉⇒A′

y
, (6) s ∈ thrds(A′),

(7) p ∈ objs(A′), and (8) v ∈BV ∪ objs(A′). By applying Lemma 16
to (1), we know that (8) /0 ` C . E and (9) E ` A′. As (6) and (9) hold,
we know (10) s ∈ dom(E). As (7) and (9) hold, it is the case that (11)
E 3 p :D. There are two cases to consider.
Case E ` 〈s?p.f=v〉 . E ′: Assume (12a) E ` 〈s?p.f=v〉 . E ′ for some

environment E ′. By applying Corollary 8 to (9) with (12a), we
get (13a) E ′ ` A′. Applying PROC-SPECULATION to (9), (12a),
and (13a), we get (14a) E ` >⇒A′ 8〈s?p.f=v〉⇒A′. Apply-
ing Lemma 17 to (8) and (14a) gives (15a) /0 ` C

q
>⇒A′ 8

〈s?p.f=v〉⇒A′
y

. Due the equivalence of (4), (16a) /0 ` B holds,
as desired.

Case E 6` 〈s?p.f=v〉: Assume E 6` 〈s?p.f=v〉. Then it must be the
case that (12b) either (ftype(D.f) = . . .bt . . . and ¬(v inhabits bt))
or (ftype(D.f) = . . .D′ . . . and E 3 v :D′′ and D′′ 6= D′). Applying
PROC-SPECULATION-SHAPE-ERROR to (10), (11), (9), and (12b),
we have (13b) E ` >⇒A′ 8〈s?p.f=v〉⇒A′. Applying Lemma 17
to (8) and (13b) gives (14b) /0 ` C

q
>⇒A′ 8〈s?p.f=v〉⇒A′

y
. Due

the equivalence of (4), (15b) /0 ` B holds, as desired.
As we showed that each case satisfies the proposition, we know that R-
SPECULATION-OPEN satisfies the proposition.

Case R-START: Assume that R-START satisfies (2). Let us assume (3) A =
CJA′K, (4) B=CJB′K, where A′= free ` | s[val x = p.start(); M]| runnable p
and B′ = 〈s!`:0〉〈s!`:1〉(s[M{[unit/x]}]| 〈p!`:2〉 p[N{[p/this]}]).
By the equalities of (3) and (4) combined with (2), we have (5)
C
q
free ` | s[val x = p.start(); M]| runnable p

y
→C

q
〈s!`:0〉〈s!`:1〉(s[M{[unit/x]}]| 〈p!`:2〉 p[N{[p/this]}])

y
.

Further, by the assumptions of the rule, we have (6) C 3 p:D, (7)
mbody(D.run) = λ~y.N, (8) D not reserved, and (9) C 3 `:Lock. By
applying Lemma 16, inversion and PROC-PAR two times, and inversion
and PROC-THREAD on (1) and (3), we have (10) /0 ` C . E, (11) E is
a sensible extension of /0, (12) E ` free `, (13) E ` runnable p, (14)
E 3 s returns aT and (15) E s̀ val x = p.start(); M : aT . By (14),
we know (16) s ∈ dom(E).
We now type the synchronization actions. By applying inversion on
PROC-RUNNABLE and PROC-FREE to (13) and (14), we have (17) E ` �,
(18) p ∈ dom(E), (19) E 3 ` :Lock. Applying ACT-ACQUIRE, ACT-
RELEASE, and ACT-ACQUIRE again on (14), (18), and (19), we get (20)
E ` 〈s!`:0〉 . F,s :lock `, (21) F,s :lock ` ` 〈s!`:1〉 . F ′, and (22)
F ′ ` 〈p!`:2〉 . F ′′, where

• F = E,s :Z,s :effects(`, E),
• Z =

{
ζ
∣∣ E 3 onacq Φ ζ and E
s Φ

}
,

• F ′ = F, ` :effects(s, F),
• F ′′ = F ′, p :Z′, p :lock `, p :effects(`, F ′),
• Z′ =

{
ζ
∣∣ F ′ 3 onacq Φ ζ and F ′
p Φ

}
.

We now type p[N{[p/this]}] and s[M{[unit/x]}]. By the definitions
of F , F ′, F ′′, (6), and (18), F ′′′ ` p : �D. Noting that the type of
mtype(D.run()) =�; /0 ��Unit, we can apply Lemma 24 on (7) fol-
lowed by PROC-THREAD to get (23) F ′′ ` p[N{[p/this]}]. Starting from
(15), applying inversion and STAT-METHOD, Lemma 24, and PROC-
THREAD gives (24) E ` s[M{[unit/x]}].
We can combine the processes and actions as follows. Starting with
(23), we can apply PROC-ACTION on (22), (21), and (20), followed by
PROC-PAR on (24). This gives (25)
E ` s[M{[unit/x]}]|〈s!`:0〉〈s!`:1〉〈p!`:2〉p[N{[p/this]}]. Applying
Proposition 25 on (25) and the result of applying S-PREFIX-PAR twice
on the process in (25) gives (26)
E ` 〈s!`:0〉〈s!`:1〉(s[M{[unit/x]}]|〈p!`:2〉p[N{[p/this]}]).
Applying Lemma 17 on (10) and (26) gives (27)
/0 ` C

q
〈s!`:0〉〈s!`:1〉(s[M{[unit/x]}]|〈p!`:2〉p[N{[p/this]}])

y
. By

applying the equality of (4) to (27), we have (28) /0 ` B, as desired.
Case R-NEW: Assume that R-NEW satisfies (2). Let us assume (3) A =

CJA′K, (4) B =CJB′K, where A′ = free p|s[val x = new D〈~a〉(~v); M]
and B′ =
runnable p | 〈s!p.~f=~v〉〈s!p.~g= ~null〉〈s!p〉s[M{[p/x]}]. By the equal-
ities of (3) and (4) combined with (2), we have (5) C

q
free p|s[val x = newD〈~a〉(~v); M]

y
→

C
q
runnable p | 〈s!p.~f=~v〉〈s!p.~g= ~null〉〈s!p〉s[M{[p/x]}]

y
. Fur-

ther, by the assumptions of the rule, we have (6) C 3 p:D, (7)
finals(D) =~f , (8) nonfinals(D) =~g, and (9) D not reserved. By ap-
plying Lemma 16, inversion and PROC-PAR, and inversion and PROC-
THREAD on (1) and (3), we have (7) /0 ` C . E, (8) E is a sen-
sible extension of /0, (9) E ` free p, (10) E 3 s returns aT and
(11) E s̀ val x = new D〈~a〉(~v); M : aT . Applying STAT-NEW to
(11) gives (12) ftype(D.~f) = final ~b~S, (13) E s̀ ~v : ~b~S, and (14)
E,x : � D s̀ M : aT . Applying inversion and PROC-FREE on (9) and
by (10), we have E ` �, (15) p ∈ dom(E) and (16) s ∈ dom(E). We can
get the write actions on the final fields by using either ACT-�-RACING-
FINAL-WRITE or ACT-�-FINAL-WRITE on (16), (15) with (6), (12),
and (13), giving (17) E ` 〈s!p.~f=~v〉 . E. In a similar way, we can get
the non-final write actions by using one of ACT-�-GUARDED-WRITE
or ACT-�-GUARDED-WRITE or ACT-�-RACING-FINAL-WRITE, giv-
ing (18) E ` 〈s!p.~g= ~null〉 . E. Applying ACT-BEGIN to (15) and
(16) gives (19) E ` 〈s!p〉 . E,s : * p+. Given (19), with VAL-OBJECT-
�, we can show that (20) E ` p : �D, which in turn gives (21)
E,s : * p+ ` p : �D and (22) E,s : * p+ s̀ p : �D. Applying Lemma 24
followed by PROC-THREAD gives (23) E,s : * p+ ` s[M{[p/x]}]. Apply-
ing PROC-ACTION to (23), (19), (18), and (17) followed by PROC-PAR
on the result of PROC-RUNNABLE applied to (15) gives (24)
E ` runnable p|〈s!p.~f=~v〉〈s!p.~g= ~null〉〈s!p〉s[M{[p/x]}]. Applying
Lemma 17 on (7) and (24) gives (25)
/0 ` C

q
runnable p|〈s!p.~f=~v〉〈s!p.~g= ~null〉〈s!p〉s[M{[p/x]}]

y
. By

applying the equality of (4) to (25), we have (26) /0 ` B, as desired.
Case R-FIELD-WRITE: Assume that R-FIELD-WRITE satisfies (2). This

gives us (3) A =C
q

s[p.f = v; M]
y

, (4) B =C
q
〈s!p.f=v〉s[M]

y
. By

the equalities of (3) and (4) combined with (2), we have (5) C
q

s[p.f =

v; M]
y
→C

q
〈s!p.f=v〉s[M]

y
. By applying Lemma 16, and inversion

and PROC-THREAD on (1) and (3), we have (6) /0`C . E, E is a sensible
extension of /0, (7) E 3 s returns aT and (8) E s̀ s[p.f = v; M] : aT .
There are two possibilities of judgments that can type (8).

Case STAT-GUARDED-WRITE: Assume that STAT-GUARDED-WRITE
types (8). By inversion and STAT-GUARDED-WRITE, we know
(9a) E s̀ p : �D, (10a) ftype(D.f) = bS wrguard Ψ, (11a) E
s
Ψ{[v/this]}, (12a) E s̀ v : bS and (13a) E s̀ M : aT . If b =�, use
ACT-�-RACING-GUARDED-WRITE to type (14a) E ` 〈s!p.f=v〉 .
E. Otherwise, use ACT-�-GUARDED-WRITE to type (14a) E `
〈s!p.f=v〉 . E. Applying PROC-THREAD to (7) and (13a) followed
by PROC-ACT on (14a) gives (15a) E ` 〈s!p.f=v〉s[M]. By apply-
ing Lemma 17 on (6) and (15a) and using the equality of (4), we
have (16a) /0 ` B, as desired.

Case STAT-RACING-WRITE: Assume that STAT-RACING-WRITE types
(8). By inversion and STAT-RACING-WRITE, we know (9a) E s̀
p : �D, (10a) ftype(D.f) = S, (11a) E s̀ v : �S, and (12a)
E s̀ M : aT . Use ACT-�-RACING-FINAL-WRITE to type (13a)
E ` 〈s!p.f=v〉 . E. Applying PROC-THREAD to (7) and (12a) fol-
lowed by PROC-ACT on (13a) gives (14a) E ` 〈s!p.f=v〉s[M]. By
applying Lemma 17 on (6) and (15a) and using the equality of (4),
we have (16a) /0 ` B, as desired.

As we proved the subcases for both possible judgments to type (8), we
have proved the proposition for the case of R-FIELD-WRITE satisfying
(2).

Case R-ATOMIC-NEW: This case is similar to both R-NEW and R-START
and can be proven similarly.
First, apply Lemma 16, inversion and PROC-PAR twice, inversion PROC-
THREAD to (3) E ` s[val x = new Atomic(v); M]. Then apply in-
version and STAT-NEW to (4) E s̀ val x = new Atomic(v); M : aT .
Applying inversion on PROC-FREE and PROC-ALLOCATED to (5) E `
free ` and (6) E ` `:Atomic along with the typing of v from the
premises of inversion and STAT-NEW applied to (4) gives us (5) E `
`:Atomic{v;2}. Similar reasoning for how to add the begin p in R-
NEW and how to add the locks in and type the thread in R-START will
allow us to get (6) E ` 〈s!`〉〈s!`:1〉s[M{[/̀x]}]. Combining (5) and
(6) with PROC-PAR and then applying Lemma 17 allows us to have the
desired result of /0 ` C

q
`:Atomic{v;2} | 〈s!`〉〈s!`:1〉s[M{[/̀x]}]

y
.

Case R-ATOMIC-SET: Similar to R-METHOD-CALL and R-ATOMIC-NEW.
Case R-ATOMIC-GET: Similar to R-METHOD-CALL and R-ATOMIC-

NEW.
Case R-ATOMIC-GETANDSET: Similar to R-METHOD-CALL and R-ATOMIC-

NEW.
Case R-ATOMIC-COMPAREANDSET-FALSE: Similar to R-METHOD-CALL

and R-ATOMIC-NEW.
Case R-ATOMIC-COMPAREANDSET-TRUE: Similar to R-METHOD-CALL

and R-ATOMIC-NEW.
Case R-LOCK-NEW: Similar to R-ATOMIC-NEW and R-NEW.
Case R-LOCK-ACQUIRE: Similar to R-METHOD-CALL and R-START, us-

ing STAT-LOCK and STAT-LOCK-CONTEXT at the appropriate time.
Case R-LOCK-RELEASE: Similar to R-METHOD-RETURN and R-LOCK-

ACQUIRE.
Case R-LOCK-ACQUIRE-REENTRANT: Similar to R-LOCK-ACQUIRE.
Case R-LOCK-RELEASE-REENTRANT: Similar to R-METHOD-RETURN

and R-LOCK-RELEASE.
Case R-CONDITION-NEW: Similar to R-ATOMIC-NEW and R-NEW.
Case R-CONDITION-RELEASE: Similar to R-START.
Case R-CONDITION-NOTIFY: Similar to R-METHOD-CALL and R-LOCK-

RELEASE.
Case R-CONDITION-ACQUIRE: Similar to R-METHOD-CALL and R-

LOCK-ACQUIRE.
Case R-END: Assume that R-END satisfies (2). Let us assume (3) A =

CJA′K, (4) B = CJB′K, where A′ = s[end p; M] and B′ = s[M].
By the equalities of (3) and (4) combined with (2), we have (5)
C
q

s[end p; M]
y
→ C

q
s[M]

y
, and (6) 〈t!p〉 <C,s

∃hb sJ–K. By applying
Lemma 16 on (1) and (3), we have (7) /0 `C . E, (8) E ` s[end p; M],
and (9) E is a sensible extension of /0. By applying inversion and
PROC-THREAD on (8), we get (10) E 3 s returns aT and (11)
E s̀ end p; M : aT . Applying STAT-END to (11) gives (12) E s̀ V : �D
and (13) E s̀ M : aT . Applying PROC-THREAD to (10) and (13)
gives (14) E ` s[M]. Applying Lemma 17 to (7) and (14) gives (15)
/0 ` C

q
s[M]

y
. By the equality of (4) with (15), we have (16) /0 ` B, as

desired.
Case R-IF-TRUE: Assume that R-IF-TRUE satisfies (2). Let us assume (3)

A = CJA′K, (4) B = CJB′K, where A′ = s[if (true){M}else{N}]
and B′ = s[M]. By the equalities of (3) and (4) combined with (2),
we have (5) C

q
s[if (true){M}else{N}]

y
→ C

q
s[M]

y
, and (6)

〈t!p〉 <C,s
∃hb sJ–K. By applying Lemma 16 on (1) and (3), we have (7)

/0 `C . E, (8) E ` s[if (true){M}else{N}], and (9) E is a sensible
extension of /0. By applying inversion and PROC-THREAD on (8), we get
(10) E 3 s returns aT and (11) E s̀ if (true){M}else{N} : aT .
Applying STAT-IF to (11) gives (12) E s̀ true : �boolean, (13)
E s̀ M : aT , and (14) E s̀ N : aT . Applying PROC-THREAD to (10)
and (13) gives (15) E ` s[M]. Applying Lemma 17 to (7) and (15) gives

(16) /0 `C
q

s[M]
y

. By the equality of (4) with (16), we have (17) /0 ` B,
as desired.

Case R-IF-FALSE: Similar.
Case R-CAST: Assume that R-CAST satisfies (2). Let us assume (3) A =

CJA′K, (4) B = CJB′K, where A′ = s[val x = (D)p; M] and B′ =
s[M{[p/x]}]. By the equalities of (3) and (4) combined with (2), we
have (5) C

q
s[val x = (D)p; M]

y
→C

q
s[M{[p/x]}]

y
, and (6) C3 p:D.

By applying Lemma 16, and inversion and PROC-THREAD on (1) and
(3), we have (7) /0 ` C . E, E is a sensible extension of /0, (8) E 3
s returns aT , and (9) E s̀ val x = (D)p; M : aT . Applying inversion
and STAT-CAST gives (10) E s̀ p : bObject, and (11) E,x :bD s̀
M : aT . By inversion and VAL-SUB-TYPE, (6), and (10) gives (12)
E s̀ p : bD. Applying Lemma 24 on (11) and (12) followed by PROC-
THREAD gives (13) E s̀ M{[p/x]} : aT and (14) E ` s[M{[p/x]}]. By
applying Lemma 17 on (7) and (14) and using the equality of (4), we
have (15) /0 ` B, as desired.

Case R-METHOD-CALL: Assume that R-METHOD-CALL satisfies (2). Let
us assume (3) A=C

q
s[val x = p.m(~v); M]

y
, (4) B=C

q
s[val x = s{N{[p/this]}{[~v/~y]}}M]

y
.

By the equalities of (3) and (4) combined with (2), we have (5)
C
q

s[val x = p.m(~v); M]
y
→ C

q
s[val x = s{N{[p/this]}{[~v/~y]}}M]

y
.

By the assumptions for the rule, we have (6) C3 p:D, (7) mbody(D.m)=
λ~y.N, (8) D not reserved, and (9) m 6= start. By applying Lemma 16,
and inversion and PROC-THREAD on (1) and (3), we have (10) /0 `
C . E, E is a sensible extension of /0, (11) E 3 s returns aT and
(12) E s̀ s[val x = p.m(~v); M] : aT . Applying inversion and STAT-
METHOD and then Lemma 24 on (12) gives (13) E,x :bS s̀ M : aT , and
(14) E s̀ N{[p/this]}{[~v/~y]} : bS. Reordering the environments in (13) and
(14), applying STAT-METHOD-CONTEXT and PROC-THREAD gives (15)
E ` s[val x = s{N{[p/this]}{[~v/~y]}}M]. By applying Lemma 17 on (10)
and (15) and using the equality of (4), we have (16) /0 ` B, as desired.

Case R-METHOD-RETURN: Assume that R-METHOD-RETURN satisfies
(2). Then we have C

q
s[val x = s{ ↑ v}M]

y
→ C

q
s[M{[v/x]}]

y
. This

case can be handled similarly to the other cases. Apply Lemma 16,
inversion and PROC-THREAD, inversion and STAT-METHOD-CONTEXT,
inversion and STAT-RETURN, Lemma 24, PROC-THREAD, and then
Lemma 17 to get the desired result.

Case R-OPERATOR: Assume that R-OPERATOR satisfies (2). Then we
have
C
q

s[val x = op(~v); M]
y
→C

q
s[M{[w/x]}]

y
. This case can be handled

similarly to R-METHOD-CALL. Apply Lemma 16, inversion and PROC-
THREAD, inversion and STAT-OPERATOR, Lemma 24, PROC-THREAD,
and then Lemma 17 to get the desired result.

Case R-FIELD-READ: Assume that R-FIELD-READ satisfies (2). Then we
have C

q
s[val x = p.f ; M]

y
→ C

q
s[M{[v/x]}]

y
. This case can be han-

dled similarly to the other cases. The only twist is that there are three
cases to consider. Applying Lemma 16, inversion and PROC-THREAD
gives E 3 s returns aT and (3) E s̀ val x = p.f ; M : aT . There are
three typing judgments which could type (3), namely STAT-RACING-
READ, STAT-FINAL-READ, and STAT-GUARDED-READ. Each case is
handled in the same way. Apply Lemma 19 followed by Lemma 24,
PROC-THREAD, and Lemma 17 to complete each case.

Since we showed that all reduction rules satisfy the proposition, we
know that subject reduction holds. 2

