arXiv:1402.4043v1 [cs.PL] 17 Feb 2014

Between Linearizability and Quiescent Consistency
Quantitative Quiescent Consistency

Radha Jagadeesan and James Riely

DePaul University

Abstract Linearizability is the de facto correctness criterion foncurrent data
structures. Unfortunately, linearizability imposes afpanance penalty which
scales linearly in the number of contending threads. Qeigstonsistency is an
alternative criterion which guarantees that a concurrema dtructure behaves
correctly when accessed sequentially. Yet quiescent siamgy says very little
about executions that have any contention.

We define quantitative quiescent consistency (QQC), aaélaxof lineariz-
ability where the degree of relaxation is proportional tgrée of contention.
When quiescent, no relaxation is allowed, and therefore @&i@es quiescent
consistency, unlike other proposed relaxations of liresdnility. We show that
high performance counters and stacks designed to satigfgagnt consistency
continue to satisfy QQC. The precise assumptions underha®@C holds pro-
vides fresh insight on these structures. To demonstrateothestness of QQC,
we provide three natural characterizations and prove csitipoality.

1 Introduction

This paper defineQuantitative Quiescent Consistency (QQ&3)a criterion that lies
between linearizability [9] and quiescent consistencylf¥, The following example
should give some intuition about these criteria.

Example 1.1.Consider a counter object with a singletAndIncrement method. The
counter’s sequential behavior can be defined as a set afssirch ag”™ 15 {" ¥ (7)5
where[* denotes an invocation (or call) of the method dnhdienotes the response (or
return) with valua. Suppose each invocation is initiated by a different thread

A concurrent execution may have overlapping method invorat For example, in
(" [" 15 {" %)% the execution of(*); overlaps with both[* I and{* }; , whereas
[15 finishes executing befor€ }; begins. Consider the following four executions.

CC{HY, C{IORC: FOEnxHl FEnhix

Linearizability states roughly thatveryresponse-to-invocation order in a concur-
rent execution must be consistent with the sequential Bpaitdbn. Thus, the first exe-
cution is linearizable, since the resporigeprecedes the invocatiofi in the specifi-
cation. However, none of the other executions is lineatedor example}; precedes
[* in the second execution, bt does not preced€s in the specification.

* Research supported by NSF 0916741.

http://arxiv.org/abs/1402.4043v1

~NoO b~ wN R

2 Radha Jagadeesan and James Riely

Linearizability can also be understood in terms lihearization pointof a method
execution, which must occur between the invocation andoresg From this perspec-
tive, the first execution above is linearizable because wefical a sequence of lin-
earization points that agrees with the specification; thigiires only that the lineariza-
tion point of (*)3 follow that of {* }; . No such sequence of linearization points exists
for the two other executions.

Quiescent consistenéy similar to linearizability, except that the responserteo-
cation order must be respected only across a quiescent, floaihtis, a point with no
open method calls. The first three executions above areagrilg consistent simply
because there are no non-trivial quiescent points. Theslastution fails to be quies-
cently consistent since the order frofnto {* is not preserved in the specification.

We defineQuantitative Quiescent Consistency (QQ@)require that the number
of response-to-invocation pairs that are out-of-ordermgt point be bounded by the
number of open calls at that point. We also giveaainting characterizatioof QQC,
which requires that if a response matchesithmethod call in the specification, then it
must be preceded by at leastvocations.

The first two executions above are QQC; however, the last tevaet. In the second
execution, the open call t6" is “enough” to justify the return of" }; before[" 1§ .
However, in the third execution, the return@f); before{" }; cannot be justified only
by the call to[*; it is “too far off.” Following the counting characterizati sketched
above, the third execution fails sin¢e) is the third method call in the specification
trace, bud? is only preceded by two invocationg: and (" . O

Quiescent consistency is too coarse to be of much use inme@sabout concur-
rent executions. For example, a sequence of interlockiligmaver reaches a quiescent
point; therefore it is trivially quiescently consistenhi$ includes obviously correct ex-
ecutions, such ab™ (" 15 [")7 ("5 [)3 (" 1; [-+, nearly correct executions, such
as[" ("1 M)y 1 07)5 CIE [-+, and also ridiculous executions, such[as(*
1074 117 C 1530 5 € 1o

Linearizability has proven quite useful in reasoning abmaricurrent executions;
however, it fundamentally constrains efficiency in a multeesetting: Dwork, Herlihy,
and Waarts|[5] show that if many threads concurrently acadgsearizable counter,
there must be either a location with high contention or arcetien path that accesses
many shared variables.

Shavit [11] argues that the performance penalty of linediz data structures is
increasingly unacceptable in the multi-core age. This nlag®n has lead to a recent
renewal of interest in nonlinearizable data structuresaAsmple example, consider
the following counter implementation: a simplified versifrthe counting networks of
Aspnes, Herlihy, and Shavit/[3].
class Counter<N:Int> {

field b:[0..N-1] = 0; /I 1 balancer

field c:Int[] = [0, 1, ..., N-1]1; // N counters

method getAndIncrement ():Int {

val i:[0..N-1];
atomic { i = b; b++; }
atomic { val v = c[i]; c[i] += N; return v; } } }

Between Linearizability and Quiescent Consistency 3

TheN-Counter has two fields: &alancerb and an array of N integer counters. There
are two atomic actions in the code: The first reads and uptiedsalancer, setting the
local index variablei. The second reads and updates tffecounter. Although the
balancer has high contention in our simplified implemeatatthe counters do not;
balancers that avoid high contention are describeg in [3].

Example 1.2.The N-Counter behaves like a sequential counter if callsgtot And-
Increment are sequentialized. To see this, consider-@o2nter, with initial state
(b=0,c=[[0], [1]]). In a series of sequential calls, the state progresses las$l
where we show the execution of the first atomic with the intioceand the second
atomic with the response. The executidnly {* }; (") can be elaborated as follows.

(b=0, =10, [1]}) T+(b=1,c = [0} [1])) L+(b=1, ¢ =12}, [1])
(b=0,c=[12), L) *>(>=0,¢c =12, 3])

So=1c=[2,3]) 2(b=1c=[4], 3]

lm

+

lﬁ

When there is concurrent access, th&€&inter allows nonlinearizable executions,
suchas(" {" 3 [15)5.

(b =0, c=[[0], [1]])

+

l,\

(b=1c=[0, 1))
(b=0, c=[[0], [1]]) £+(b=0,c=[0], [3]])

+

fﬂ

+

I
Il
=
O
I
f=}
&)
=
+ f‘d
I
Il
H
O
Il
~N
w
=

With a sequence of interlocking calls, it is also possibletifi@ N-Counter to execute
as[* ("1; ")y C 15 F)3 C"1E [-+, producing an infinite sequence of values that
are just slightly out of order. Using the results of this papae can conclude that with
a maximum of two open calls, the value returnedgey AndIncrement will be “off”

by no more than 2, but this does not follow from quiescent isbascy. o

Our results are related to those of [2+4, 13]. In particidapnes, Herlihy, and
Shavit [3] prove that in anguiescentstate (with no call that has not returned), such
a counter has a “step-property”, indicating the shape.@etween}; andl; in the
second displayed executionof Examplg 1.2, the statesawittf0], [3]] do nothave the
step property, since the two adjacent counters differ byentiwain 1.

Aspnes, Herlihy, and Shavit imply that the step propertgiated to quiescent con-
sistency, but they do not formally state this. Indeed, theyat provide a formal defi-
nition of quiescent consistency. It appears that they haweind is something like the
following: An execution isveakly quiescent consistahany subsequence sequential
calls (single calls separated by quiescent points) is aatdbdf a specification trace.

The situation is delicate: Although the increment-only @us of [3] are quies-
cently consistent in the sense we definefl in Example 1.1 €mdéey are QQC), the
increment-decrement counters of [2,) 4, 13] are omBaklyquiescent consistent. In-
deed, the theorems proven in[[13] state only that, at a geiggaint, a variant of the
step property holds. It states nothing about the actualegataad from the individual
counters. Instead, we expect that a quiescently consistetition should be a permu-
tation ofsomespecification trace, even if it has no nontrivial quiesceints.

A WN P

PO WOWOoW~NOOM

=

4 Radha Jagadeesan and James Riely

Example 1.3.Consider an extension of the @unter with decrementAndGet.

method decrementAndGet ():Int {
val i:[0..N-1];
atomic { i = b-1; b--; }
atomic { c[i] -= N; return c[il; } }
The execution* {* (" <~ > , 1%, }}); is possible, although this is not a permutation
of any specification trace. The execution proceeds as fellow

(b=0,c=[0,[1)) > (b=1c=[0,[1)]) (b=0 c=][0], 1]
5 (b=1,c=[0,[1])= (b=0,c=[[0],[1])
Z23(b=0,c= (-2, [1]]) T2(b=0,c=[[0], [1]])
2 (b=0,c=[0,[38])X (b=0,c=[0,[1]) O

It is important to emphasize that this increment-decremennter is not even quies-
cently consistent. There is no hope that it could satisfysirgnger criterion.

Of course counters are not the only data structures of isitdrethis paper we treat
concurrent stacks in detail. We define a simplifiéestack below; the full, tree-based
data structure is defined in Shavit and Touitou [13] and sunz@a in[secfion 6.

class Stack<N:Int> {
field b:[0..N-1] = 0; /I 1 balancer
field s:Stack[] = [[0, [1, ..., [O1; // N stacks of values
method push(x:0bject):Unit {
val i:[0..N-1];
atomic { i = b; b++; }
atomic { val v = s[i].push(x); return v; } }
method pop():0bject {
val i:[0..N-1];
atomic { i = b-1; b--; }
atomic { val v = s[i].pop(); return v; } } }
The trace given ifi Example 1.3 for the increment-decremennter is also a trace
of the stack, where we interpretaspush, - aspop, and a negative return value as
stack underflow. Whereas this is a nonsense execution faur@nit is a linearizable
execution of a stack: simply choose the linearization paiitihe pops before the pushes.
Nonetheless, thE-Stack is only weaklyquiescent consistent in general.

Example 1.4.TheN-Stack generates the executidfj 1" (})* {; <~ >, ¥ as follows.

=0,s=[]1]) Bp=1s=[[)]) Tb=1s=Tal,[])
Ly(b=0,s=1al,[]]) 2+(b=0,s = [a], [b]])
L5(b =15 =[], [b]])
“(b=0,s =[], [b]]) =(b=0,5 =[], b]])

However, this specification is not quiescently consistatit any stack execution: There
is a quiescent point after each of the first two pushes; thezéfis impossible to pop
beforeb. This execution is possible even when there are severakgustforehand

Between Linearizability and Quiescent Consistency 5

In the case of thé&\-Stack, a simplelocal constraint can be imposed in order to
establish quiescent consistency: intuitively, we reqtiisg no popovertakes push on
the same stack[i]. In[secfion b we show that the stack is actuglI)C under this
constraint, and therefore quiescently consistent. (We In@¢ found a local constraint
under which the increment-decrement counter is quiesceatisistent; we believe that
it may be achievable with a global toggle that determines teowesolve the races at
each point, but this, of course, defeats the point.)

The correctness result that we prove for elimination-ttaeks i sectionl6 is much
stronger than that of Shavit and Touitoul[13], who only praxgakquiescent consis-
tency. The same is holds for increment-only counters [3hoalgh in this case, we
have elided the proofs: The proofs for the tree-based inen¢ranly counter follow the
structure proofs for the elimination-tree stacks.

The preliminary version of Shavit and Touitou’s paper [12§gests an upcoming
definition e-linearizability, “a variant of linearizability that captures the notion af-*
mostness’ by allowing a certain fraction of concurrent apiens to be out-of-order.”
Since the details did not make it into the final version of thpgr [13], it is unclear
whether the “fraction of concurrent operations” is meanwéoy depending on the
amount of concurrency available in execution at any givemertt, or if the “fraction”
is fixed at the outset. If it is meant to vary, then it would bepgmilar to QQC.

This thread was picked up by Afek, Korland, and Yanovsky [d4l @anproved by
Henzinger, Kirsch, Payer, Sezgin, and Sokolava [8]. As aefim (8], the idea is to
define a cost metric on relaxations of strings and to bounddtaxation cost for the
specification trace that matches an execution. This approas been used to validate
several novel concurrent data structures |1, 6].

Unlike QQC, the metrics in these papers do not depend on thiéable concur-
rency in the execution. In fact, with the exception of therément-only counter vali-
dated in|[1], all of the concurrent data structures of [1 pééntionally violate quiescent
consistency. As such, their work is orthogonal to the apghiage pursue here, which
specifically refines quiescent consistency.

The primary difference between QQC and the relaxation<approach of.[1,!8]
can be stated as follows: with QQC, the maximal degradaggedds upon the amount
of concurrent access, whereas in the relaxation-basedagipit does not. Thus, QQC
“degrades gracefully” as concurrency increases. In pdaica QQC data structure that
is accessed sequentially will exactly obey the sequergietiication, whereas a data
structure validated against the relaxation-based appnoay not.

In the rest of the paper, we formalize QQC and study its ptserThe heart of
the paper i§_secfior 5, which defines QQC and establishemipegies. The impatient
reader can safely skim up to that section, referring bacleasssary.

Our contributions are as follows.

— We define linearizability[(secfion 3), quiescent consisyefsection 4) and QQC
(section b) in terms of partial orders over events with daratThe formalities of
the model are described[in sectidn 2. A in Examplg 1.1, tfieitiens are given in
terms of the order between a response and a subsequenttionoca

6 Radha Jagadeesan and James Riely

— We provide an alternative characterization of QQC in terfts@number of invoca-
tions that precede a response, as well as a similar charzatien of linearizability.

— We provide an alternative characterization of QQC in terfresmroxy that controls
access to the underlying sequential data structure. The/@ads a form ofpec-
ulation to the flat combining technique of Hendler, Incze, Shavit &mafrir [7].
We show that the operational semantics is sound and confple@QC; that is, it
generateall and onlytraces that are QQC.

— Like linearizability and quiescent consistency|[10], Q@@on-blocking and com-
positional. Like quiescent consistency and unlike liresgility, a QQC execution
may not respect program order. We provide a proof for contiposility.

— We show that QQC is useful for reasoning about data strustarthe literature. In
[secfion 6, we prove that the elimination tree stacks of Steand Touitou([13] are
QQC, as long as no pop overtakes a push on the same stack.

2 Model

The semantics of a concurrent program is given as a procgsecAsss a set of traces.

A traceis a finite, polarized LPO (labelled partial order). Formalie define traces to

be finite sets of nameglvents The event names are the carrier set for the LPO, and the
order is embedded in the events themselves using name sets.

2.1 Events

An event is a quadruple, consisting of a polarity, a labelame (identifying a node
the partial order) and a set of names (identifying the priegedodes in the patrtial
order). As a standard example, the reader may want to caraluds generated by the
grammar(== calltofw | rettofwwherert is a thread identifierp is an object
name,f is a function name, and is the actual parameter or return value.

Leta, b e Namerange over names aid B C Namerange over finite sets of names.
And let/ € Labelrange over labels (with some interpretation in the appbcedomain).
Then events are defined as foll@vs

u v = (203 | (b0)i

Under our standard example, we would expect events to conpaiis of the form
(vcallTo fw) and (aretTo fw)8, wherew is the actual parameter and is the re-
turned value. The appearanceadh the return event indicates that this event closes the
open call named.

Three of the components in an event can be retrieved simmyus¥ the following
functions:label((7¢)3) = ¢, id((7¢)3) = a andbefore((?¢)3) = A. For the remaining
component, we define both the functignd andbrak. Let p € {?, !} range over the
polarities for input) and output () and letnone be a reserved name.

L [7 ifu= (203 L [none it u=(20)3
pOI(”)_{a f U (b2 brak(u)_{b i U (b0ya

1n this paper, we consider the simple case of non-intergat@mposition. This allows us to
ignore the internal polarity which arise from the interantbf input and output.

Between Linearizability and Quiescent Consistency 7

Because the standard example is so familiar, we will congiecation/call/input? to
be synonymous, and likewise response/return/output/

We sometimes use superscripts on name metavariables,safcarala’. Any name
bound toa' must be associated with an output event, and likewise fartiagents. The
superscript makes these distinct metavariables. Thus weahat a*.

Turning to the order between events, we wiite> v to indicate thau precedey:
(u=v) = id(u) € before(v).

2.2 Traces

We usep-t to range oveevent setfinite sets of events). Defirids(s) = {id(u) | u € s}
and leta € sbe shorthand foa € ids(s).

Given an event setand name seA, defineindexingass/A] = {u € s|id(u) € A}.
Thussids(s)] = s. If event names are unique, this generates the partial famsfa]
for single names: is[{a}] = 0 thens[a] is undefined; ifs/{a}] = {u} thens[a] = u.
IndAexing provides a natural way to lift ordering relationsrh events to namesa =

b) = (s[a] = s[b]). Let be=>s the reflexive closure of>s.
An event setis atraceif it satisfies the followingyu, v € s.

(1) eventnames are uniqueidiu) = id(v) thenu=v

(2) before okay:Va € before(u). 3w € s. a=id(w)

(3) brak okay: if pol(u) = ! thenbrak(u) € before(u) andpol(s[brak(u)]) = 7
(4) input acquires control: i =5 b” thendc'. a=sc' =4 b?

(5) output releases control:df =sbthendc’. a' =sc' =sb

(6) =sdefines a strict partial order (irreflexive, antisymmetnd @ransitive)

A tracesis operationalif va’, b' € s. eithera” =sb' orb' =sa".
A tracesis sequentialf Va, b € s. eithera=sborb=-sa.

Our model can be viewed as a labelled partial order enrichiéid polarity and
bracketing. Most significant here are requiremehts (4) &)dn(the definition of a
trace. One immediate consequence is that input events thamelated to other input
events unless there is an intervening output event, andbsiynor the dual case.

Consider two bracketed event sequentgsnd (). As indicated by conditioi{3)
in the definition of traces, the open brackets must levents. There are six possible
relations among the events. Three of these are familiaonutdcbe that[] precedes
(), orthat() preceded] or that they are concurrent.

[—1
[—]1—(—) (—)—[—]1 >

(—)

All of these traces are fully specified in the sense that evasyordered with respect
to every!, and dually everyt is ordered with respect to every We call such traces
operationalin that they correspond to traces generated by an interigaamantics. In
addition, the first two traces amequential since there is a total order on the events.

8 Radha Jagadeesan and James Riely

Note that in any sequential trace, the initial event mustbeput; this follows from
properties[(R) and{3) in the definition of traces.

There is a homomorphism from strings of bracketed labelsperational traces:
each input in the string is ordered with respect to each dutmt follows it in the
string, and dually. If we narrow attention to sequentiatés this is an isomorphism.
For example, we can write the first two traces above as thegstfi] () and () [],
respectively. The last trace above can be written as anyléateng in [] ||| () that
orders the inputs before both outputs; theselaté), ([1), [()]1,and([)]. We
use this notation when giving examples of operational 8aas in the introduction.

As a consequence of the homomorphism, we can use stringarotat operational
traces without ambiguity. Specifically, Ist represent the concatenationsdndt and
s|||t represent the set of their interleavings, with renamingea®ssary to avoid colli-
sions between the namessdindt.

Our model also allows underspecification of the relatiopshi

[<] [7] [—1
«—) (—) (—)

The leftmost of these says only th@il cannot precedé]. Said positively, eithef]
precedes), or they are concurrent. The rightmost of these places nstnts on the
relative order off] and ().

Operational traces can be seen as having a global notiomef #veryone agrees
what happened before what. The constraints between pairpwts and pairs of output
simply indicate the limits of observability: it is imposstto tell which of two calls
happened first. In this light, one may view an underspecifiecktas a representative
for the set of operational traces that can be derived by aognegthe partial order. We
take this viewpoint in our compositionality result, whichdtated only for operational
traces.

We define several notations for event sets and traces.

As noted above, for operational tracesndt we use string notation for concatena-
tion (st) and the set of interleavings|(| t).

A renamingof a trace is identical to the original trace up to a bijectinmnameg
We write =4 for equivalence up to renaming.

A permutatiorof a trace contains events with the same names, labels aaudt@d,
but may differ in ordering. Permutation doest allow renaming; the names to pick out
the witnessing bijection. We write ;; for equivalence up to permutatﬁ)n

A prefixis a down-closed subtratene writet <pre SOr'S > t to indicate that is
a prefix ofs, and|sa for the smallest down-closed subsetsdhat includes.

2 (s=4 t) is defined to mean that there exists a bijectioon names such that (ids(s) = a
(ids(t)), and (2)vVa € ids(s). s[a] = t[a(a)]. (In the first condition, we have used the obvious
homomorphic extension af to sets of names.)

3 Let (u=2b¢! v) = (label(u) = label(v)) A (brak(u) = brak(v)).

Then defings=xt) = (ids(s) = ids(t)) A (Va € s. sla] =[2b¢! t[a]).
4 Tracet is aprefixof tracesif Va,be s. if act andb =sathenbet.

Between Linearizability and Quiescent Consistency 9

We treat traces both as sets of events and as partial ordersisé&(—) for set
difference and-+) for partial order difference

3 Linearizability

We give two characterizations of linearizability and proeepositionality.

In[subsection 3]1, we give a characterization that lookyetyeway tocut a trace
into prefix and suffix; linearizability requires that resgerto-invocation order be re-
spected across all cuts. This corresponds to characierizstt QQC given in subsec-
tion 5.1. In the case of QQC, a certain number of invocatioayg bre ignored, propor-
tional to the number of calls that are both open across tharmdibut of specification-
order with respect to the response.

In[subsection 312 we give a subset-based characterizattioh requires that if a
response matches tife method call in the specification, then it must be preceded by a
the firsti invocations of the specification. This corresponds to attarezation of QQC
given in[subsection 512. In the case of QQC, it is sufficieat thresponse by thé
method be preceded by anynvocations, not necessarily the filshvocations of the
specification.

The proof of compositionality i subsection B.3 is provideda warmup for the
proof compositionality for QQC ih_subsection b.4.

3.1 First characterization: response to invocation

Intuitively, linearizability requires that the respontseinvocation order in an execution
be respected by a specification trace. To showdhatlinearizable, it suffices to do the
following

— Choose a specification trate

— Choose an extensia of §” that closes the open calls #i. Let extensions(s’) be
the set ofextension®f s’, such that (1) i§' € extensions(s”) thens” is a prefix of
S (S >pre §’), and (2) all of the new events 81— s’ are ordered after all events of
opposite polarity irgld (that is, calls after returns and returns after calls).

— Choose a renaming=¢4 S such thats = t. Informally, this establishes that is
a permutation of. Rather than carrying the permutation around in the dedimiti
as usual in definitions of linearizability, we perform a remag up front, once and

5 An event set is bracketedif every output int has a matching input ity that isVu € t. if
pol(u) = ! thenbrak(u) € ids(t). A bracketed set may contain unmatched inputs, but not un-
matched outputs.

For arbitrary event sets, we write—t for set difference. For trace and bracketed
event set, we writes=t for partial order difference. For example, consider thedrthe
sequential traces = (7£1)§(al2)%y (703)7, 4y (DLa)y o 1y (705)Sa 4 y) @Nd lett be the

bracketed se{s/b], slb']}. Then we haves—t = <?£1>3<a£2>5{‘;}(?€5>?a.ahb‘b,
(201)§(ab2)Ty (745)5, o)
6 extensions(p) = {S| p<pre SAVa' € p. Vb’ € s—p. a' = b’
AVa’ € p.Vb'es—p. &=, b'}

) ands—t =

10 Radha Jagadeesan and James Riely

for all. The names are then witness to the permutation. Tliksvnicely, since
our traces are indexed by names. Typically, linearizabiditdefined over strings,
indexed by integers, so this technique is not available.

— Show that for every responsg in s and invocatiorb” in s, if a' preceded’ in s
(@' =sb?), then the same must be trueti(a' = b?).

Stated compactly, we have the following definition.

Definition 3.1. Traces’ linearizestot if 3’ € extensions(s”). 3s=4 §. s=xt and

?

va'es vb’es (a'=sb’) implies(a’ = b").
Trace sef linearizeso T if Vs’ € S 3t € T. &’ linearizes td. m]

This definition differs from the traditional one in severalal details, but is equiv-
alent under reasonable assumptions. The differences éoboes.

— We do not require that specifications be sequential.

— We do not make requirements specific to threads. A threadniplgia totally or-
dered sequence of actions, with the result that every paimwications must be
separated by a response, and similarly for pairs of resgoni$e fact that thread
order is respected by linearizability follows from the gealeequirement that order
from response to invocation must be respected.

— In addition toreturns we allows € extensions(S') to includecallsthat are not irs.
Assuming that specifications are prefix-closed, this pesivesess is harmless. For
every spec that includes the extra calls in a suffix, there is a corredpansped’
such that € extensions(t’) that does not include them; §f linearizes ta, then it
also linearizes to'.

— We require that all incomplete calls remaindn Assuming that specifications are
input-enabled, this restriction is harmless. For everg spieat does not include the
extra calls, there is a corresponding spe€ extensions(t) that does include them;
if §' linearizes ta with some incomplete calls removed, then it also linearinds

We can refactor the definition slightly to pull it into the glegaused to define quies-
cent consistency and QQC.

Definition 3.2. For tracess, t, we writes Cji, t if S=5t and for every prefip <g.. S

?

va'e p. vb’e s—p. (a' =sb’) implies(a’ = b").

Then(s’ Cin t) = (35 € extensions(s’). Is=¢ 5. SCjin t). 0

Lemma 3.3. sislinearizes tot iffg, t.
PROOF This is an immediate consequence of the definition of prefix.]

This characterization of linearizability requires that ek at every way t@utthe
tracesinto a prefixp and suffixs— p. We then look at the return eventsnand the
call events irs— p and ensure that the order of eveatsssing the cuis respected im.
The definitions are equivalent since we quantify over allsfige cuts.

Between Linearizability and Quiescent Consistency 11

As an example, consider the incrementing counter spedificérom[Example T/J1:
[*15 <" ¥ (")3. For acompletely concurrent trace, suchlag” (*)3 ¥ 1§ lineariz-
ability is trivially satisfied since there is no cut that hassturn on the left and call on
the right. The tracé” [* }; (" 135 is also linearizable. The interesting cutlis[* };
which requires only that; precede(” in the specification. By the same reasoning,
{* (" }] [)5 15, is not linearizable, since it requires that precedel" .

3.2 Second characterization: invocation to response

?

Theorem 3.4. Lett be a sequential trace with name ofdéra;, a}, aj, ..., a;, ;).
Let s be an operational trace such thatgt. Then

sCint iff Vj.{1,....j} C{ilaf =saj}

PrRoOOF Using the definition of linearizability and calculatingeviave the following
proof obligation.

(Vi,j.al =sa] impliesi <j) <« (Vi,j.i<jimpliesa =sa))

(=) Fixi < j. If i = j the right implication holds by the definition of traces. Sup-
posei < j. By operationality, eithea’ = aj or aj =&/ . In the first case, the right
implication holds. In the second case, the leftimplicatieguiresj < i, a contradiction.

(<) Fix a' = aJ?. By way of contradiction, suppose< j. From the right impli-
cation we deduce tha = aj. The resulting cyclea' = al =s a' contradicts the
supposition thas is a trace. Therefore it must be that j as required. |

Let us revisit the incrementing counter specificationy {* ; (")5 . In the com-
pletely concurrent tracé” {* (*)3 }; 1; all invocations precede all responses, and
therefore linearizability is trivially satisfied. The liagzability of {* [* ¥ (" 15)3 fol-
lows from the fact tha}; is preceded by botfi* and{", and the nonlinearizability of
{" ("} [")3 1§, follows from the fact thal* does not preceds .

3.3 Compositionality

We re-prove one of the fundamental properties of lineaiiitgbcompositionality [9].
The proof we give here is similar to the proof given for QQC ibsection 54, in a
simpler setting.

Lemma 3.5 (Operational traces). Suppose that s is an omeralitrace that imposes
the following order.

& % b b
\IX L/
% b

Then either &= b or b] =sa.

12 Radha Jagadeesan and James Riely

PROOF. If neither holds, then, by operationality we must have tigth-s a; anda) =
b;, which results in the cyclby =s a] =saj =sb; =sbj. |

Recall from[subseciion 2.2 théff|) denotes interleaving an@:-) denotes partial
order difference. To split tracgin “half,” it suffices to postulate the existencesfand
s, such that; =s+s, andsy) = s+ 5.

Theorem 3.6. Lettand b be sequential traces.

Lets, s and $ be operational traces such thats s+s, and $ = s+ 5.

Fori € {1, 2}, suppose that each &y, t;.

Then there exists a sequential trace {t; ||| t2) such that $5j;, t.

PrROOFE Without loss of generality, assume thdd(t;) andids(tp) are disjoint. Let the
sequence of names tq be (af, a3, ..., a, a,) and sequence of name i be (b},
bi, ..., b5, bh). Applying[Theorem 3} to the suppositisnCi, t1, we have that < j
impliesa’ = a}, and similarly for thebs.

Our aim is to construct a sequential interleavingy@&ndt,. To do this, we construct
a partial order over event pairs. Any interleaving consisteth the partial order will
satisfy the conclusion of the theorem by construction. Rerdlements of the partial
order, leta; represent the pai/a/ and letby represent the pain;b;. Let theas be
totally ordered by subscript, corresponding to the fadtafias s aj whenevei < j, and
similarly thebs. Let there be aross edgdrom a; to by if &/ =5 b}, and symmetrically
from bs toas. Visually, we have an order such as the following.

y —a — - —q — - — Q) — ... — am

by — by — - —bg— - b — - — by

Thea-aandb-b edges go fron? to ! in s, whereas the cross edges go frono 7.

The proof obligation is to show that this order is acyclicwihich case it induces
at least one interleaving. We show that any cycle in the déforder corresponds to a
cycle ins, contradicting the supposition thats a trace. For there to be a cycle in the
defined order, there must be< j andk < ¢, such thag = aj =sbf =sb, =sa’.
This contradicts the supposition ttess a trace. o

4 Quiescent Consistency

Let open(s) be the set of calls is that have no matching retlfinwe say that trace
is quiescentf open(s) = 0. This notion of quiescence does not require that thereobe n
active thread, but only that there be no open calls. Thus,rbtion of quiescence is
compatible with libraries that maintain their own threadlso

The definition of quiescent consistency is similaf o Defimt3.2 of linearizabil-
ity. The difference lies in the quantifier for the prefix<,.. s Whereas linearizability
quantifies oveeveryprefix, quiescent consistency only quantifies oyeiescenpre-
fixes.

" open(s) = {ues| pol(u) =7 A Aves brak(v) =id(u)}

Between Linearizability and Quiescent Consistency 13

Definition 4.1. We writesCq t if s=5t and for anyquiescenprefix p <. s

?

va'e p. Yb'es—p. (a' =sb’) implies(a’ = b’).
Then(s’ Cqct) = (39 € extensions(s’). I3s=g 5. SCqct). O

Again let us revisit the counter specification frfm Exampti 1* 15 {* 3 (7)3.
This notion quiescent consistency places some consti@intise system even when it
has no nontrivial quiescent points. For example, the ei@eut {* (")3} 1§ is not
quiescently consistent with the given specification, sihienot a permutation. If one
extends the execution tf" {* (")3} 15 <" >, and attempts to matches it against the
specification[* 15 {* }1 <" >5 (")3, quiescent consistency continues to fail: In the qui-
escent prefix* {* (")3 }] 15, the order across the cut froj to <* is not preserved
in the specification.

For linearizability, we argued that because specificatavarefix-closed, only re-
sponses need be included in teeensions of a trace. The same does not hold for
quiescent consistency. For example, siricel” }; [15)5 is quiescently consistent,
its prefix (" {* }] should also be quiescently consistent. However, there spaoifica-
tion trace that can be matched that does not incliidig . Therefore, it does not suffice
merely to close the open call by adding; We must includel® andlj .

Compositionality (as expressed[in_ Theorem 3.6) also haldgjfiiescent consis-
tency. The proof is straightforward: any quiescent poingof s, is also a quiescent
point for eachs;; the two specifications may be interleaved arbitrarily ew these
quiescent points.

As noted in the introduction, if the sequence of interlogiéalls[* (" 17 [*)] (" Iy
[* ---, never reaches quiescence, then the counter may return aumalnmaumber for
i, j andk. QQC reduces this permissiveness by looking at every cuéniains less
strict than linearizability by loosening the requiremératteveryresponse-to-invocation
across the cut be respected in the specification.

5 Quantitative Quiescent Consistency

We provide three characterizations of QQC and prove theiivatence.

— In[subsection 511, we define QQC in the style that we have dkfinearizability
and quiescent consistency, from response to invocation.

— In[subsection 512, we give@unting characterizationf QQC, which requires that
if a response matches tif® method call in the specification, then it must be pre-
ceded by at leastinvocations.

— In[subsecfion 513, we give a operational characterizafi@Q@C as a proxy between
the concurrent world and an underlying sequential datetstre. This can be seen
a mix of flat combining Hendler, Incze, Shavit, and Tzafrj\with speculation.

Finally, in[subsection 514, we demonstrate that QQC is caitipoal, as in|[9].

14 Radha Jagadeesan and James Riely

To give some intuition for the what is allowed by QQC, we firsiegsome examples
using the 2Counter from the introduction. First we note that the capabilityagisby an
open call can be used repeatedly, as in the execatidh 17 {* 3 ["15{" ¥ "1 {" 3,

)g - Alternatively, multiple open calls may be accumulated &ate an trace with events
that are arbitrarily far off, as i6” [* 17 (" [" 13 (" [15 " [7 17 [" 1505)4)g)g - Note
that [* 1 follows [17 in this execution! It is worth emphasizing that the order be-
tween these actions is observable to the outside: a singladitan calgetAndInc-
rement and get 7, then subsequently gadltAndIncrement and get 0.

In general, alN-Counter can give results that atex N off of the expected value,
wherek is the maximum number of open calls aNds the width of the counter. There
is no way to bound the behavior of this counter, as in [8], aithalso bounding the
amount of concurrency, as in [1].

Itis also possible for open calls to overlap in nontriviaywaThe tracel” [* 17 {*

[* 1505 ()5 ¥, is QQC. Here, the first™ justifies the out-of-order execution f 1;
and [* 1; . The subsequent’ justifies an inversion of the previous justifier, namely
(*)% and(*); . Asimilar exampleis(" (")7 (" ["1§)5 7153,

Finally, we note that the stack executioh [* 1; (;)* }* is QQC with respect to
the specificatior(;)* [* 1; {; }*. This follows from exactly the kind of reasoning that
we have done for the counter. This lack of causality may hehiing, but we note that
it is typical of weak correctness criteria such as quiescensistency. We revisit this
issue in the conclusions.

5.1 First characterization: response to invocation

Linearizability requires that foeverycut, all response-to-invocation order crossing the
cut must be respected in the specification. Quiescent densislimits this attention
to quiescentuts. QQC restores the quantification over every cut, baixes the re-
quirement to match all response-to-invocation order éngsthe cut. When checking
response-to-invocation pairs across the cut, QQC allowsesimvocations to be ig-
nored. How many?

One constraint comes from our desire to refine quiescenistensy. For quiescent
cuts, we cannot drop any invocations, since this quiesaamgistency does not. As a
first attempt at a definition, we may take the number of droppeatations at any cut
to be bounded by)pen(p)\. However, this is too permissive. For example, this simple

criterion cannot distinguish the following executionsifriicxample 1.]1.
C{OHrR: CCn{H

The interesting cut splits the traces in half at the midpdimteach case there is one
open call. Therefore in the first trace, we can ignfren the suffix, and in the second
trace, we can ignoré® in the suffix. However, we believe that these traces should be
distinguished. The second trace is “more off” than the first.

The difference can be seen by looking not only at the numbepeh calls, but also
atwhichcalls are open. In the first trace we haVe before}; , and in the second, we
have[* before);. We say that(" is early for }], since it does not preced¢ in the

specification, whereaf’ is not early for)}, since itdoesprecede);. We restrict our
attention to calls that are both open and early with respeittd response of interest.

Between Linearizability and Quiescent Consistency 15

Given a specification anda' € t none of the actions in thedownclosure ofa!
could possibly be early fa'; any other action could be. Thus, the actionspan(p) —
(lta') are both open and early f@'. This leads us to the following definition. (In
[subsection 512, we show that for sequential specificatiwas;an swap the quantifiers
(3r) and(va'), pulling out the existential.)

Definition 5.1. We writesCqq t if s=5t and for any prefixp <, s

va'e p. 3r Cs. |r| < |open(p) — ({1a')].
vb’e ((s—p) —r). (' =sb?) implies(a‘ = b?).

Then(s’ Caqc t) = (39 € extensions(s”). Is=¢ . SCqqc t). m

In this definition, it is safe to restrict attention to setsonsisting only of input
events that are concurrent with the open calls. We do not smpbese restrictions
explicitly because they are not necessary. Choosing autjmés not add any flexibility,
effectively wasting an open call. Non-concurrent calld i revealed by the prefix in
which the call is closed.

Theorem 5.2.(Ciin) C (Cgqc) C (Cqc)
PrROOF Containment is immediate from the definitions, alwaysngki= ¢ for QQC.
To see that the containment is proper, consider the increéngecounter specification

from[Example TIL[" 1; (")7 {" %5 . With respect to this specificatioft; (")] [* 15}
is QQC but not linearizablé" {* ¥, (")] 1§ is quiescently consistent but not QQQC.

5.2 Second characterization: counting invocations

Given the subtlety df Definifion 5.1, it may be surprisingtt@eQC has the following
simple characterization for sequential specifications.
Theorem 5.3. Lett be a sequential trace with name ofdgra;, ..., a;, a)). Let s be

an operational trace such that=s; t. Then

SCqect iff Vi j<|{a|a =sal}

PROOF (=) Fix j, letp= isaj, and letg, r’, o be the following disjoint sets.

q={a/ [i<jra’=saj}
r={al |[i<jra #Asaj}={a|i<jAaj =sal} (byoperationality)
o={a|i>jAra’ =saj} Dopen(p)—(la)) (by calculation)

Note thatgUo = {a] | &/ =sa; }; therefore it suffices to show thegUo| > j.

For every event i’ € r’ we have that < j and therefora; =5 a; andaj A &
Hence the sat chosen i Definition 5]1 must includé From, we have
that |r| < |open(p) — (+&})r|. Sincer’ C r andopen(p) — ({ta}) C o, we have|r'| <
|o|. Since|qur’| = j, we have|quo| > j, as required.

16 Radha Jagadeesan and James Riely

(<) Fix p. Following the argument given in the prooflof LTemmal5.4, iderto
show that the requirements[of Definition 5.1 hold for evatry p, it suffices to show
that they hold foaj, where letj = max{k| a; € p}.

Fix j = max{k | a; € p}. We now show that the requirement$ of Definifion 5.1 hold
for a}. We choose, r ando as before.

g={a|i<jra’ =sal}
r={a’|[i<jnal Asaj} ={af|i<jra =sa}
o={a/|i>jAral =saj} Copen(p)— (l1a))

To see thab C open(p), consider that it € othena ¢ p; otherwisej # max{k | a; €

p}. By the second characterization ofabove (which follows from operationality),
va' &r. (a} =s &) impliesj < i. Thus, to establish the result it suffices to show that
|r| <|open(p) — (l1a})|. By assumptionjquo| > j. Since|qur| = j, we have|r| <

|o| and thereforgr| < |open(p) — ({ta})| as required. O

This characterization provides a simple method for catuawhether a trace is
QQC. For example the tracé (")7 (" [*13)3 [15}, is QQC since)] is preceded
by two calls,1§,)3 by four, andl}, }; by five. The tracel” (")] ("3 [T 15 [15 %,
is not QQC since); is only preceded by three calls, yet it is the fourth call ie th
specification.

For sequential specifications, we can also simplify Debnis.1 by exchanging the
quantifiers(3r) and(va'), pulling out the existential.

Lemma5.4. Lett be a sequential trace with name of@éra;, ..., a;, a)). Let s be
an operational trace such that=s;t. Fix p <, S. Then the displayed requirement of

is equivalent to

Jr Cs.|r| < |openEarly,(p)|.
va'e p. Vb’e ((s—p) —r). (a' =sb") implies(a' = b?),

whereopenEarly; (p) = {b’ € open(p) | Aa' <€ p.b”=¢a'}.

ProoF (5.4=-[E.1) Immediate.

(5.1=[5.4) Consider the proof of the reverse directies)(in the[Theorem 513. An
examination of the proof shows that the open calls constdgatisfy the more stringent
requirements df514. In fact, the prooflof b.3 shows thaill €5.8.4). The result follows
since the forward direction 6f 5.3 shows tHat (5:15.3). O

For full concurrent specifications and implementations,suspect thaf Lemma 5.4
fails. (To get a sense of the issues, consider a specifidhtidordere — candb — d,
and an implementation that executes— d andb — c.) In this paper, however, all of
our results concern sequential specifications and opegdiimplementations.

5.3 Third characterization: speculative flat combining

Our third characterization of QQC describes how QQC affantarbitrary sequential
data structure, using @roxythat generates QQC traces from an underlying sequential

Between Linearizability and Quiescent Consistency 17

implementation. The proxy isound in that every trace that it accepts is QQC, and
completein that it generates every operational trace that is QQ@ vaspect to the
sequential data structure.

This characterization of QQC incorporatgseculationinto flat combiningl[7] Flat
combiningis a technique for implementing concurrent data structusisg sequen-
tial ones by introducing a mediator between the concurrentdaand the sequential
data structure. As for speculation, we push the obligatiqorédict the future into the
underlying sequential object, with must conform to thedwiing interface.

interface Object {
method run(i:Invocation):Response;
method predict():Invocation; }

The run method passes invocations to the underlying sequentiadtatie and returns
the appropriate response. Thwedict method is an oracle that guesses the invocations
that are to come in the future. It is the usep@kdict that makes our code speculative.

Given anObject o, the proxy is defined as follows.

class QQCProxy<o:0bject> {
field called:ThreadSafeMultiMap<Invocation,Semaphore> = [];
field returned:ThreadSafeMap <Semaphore, Response> = [];
method run(i:Invocation):Response { //proxy for external accessto o
val m:Semaphore = [];
called.add(i, m);
m.wait();
return returned.remove(m); }
thread { //single thread to interact with o
val received:MultiMap<Invocation,Semaphore> = [];
val executed:MultiMap<Invocation,Response> 0a;
repeatedly choose {
choice if called.notEmpty() {
received.add(called.removeAny());
val i:Invocation = o.predict();
val r:Response = o.run(i);
executed.add(i, r); }
choice if exists i in received.keys() intersect executed.keys() {
val m:Semaphore = received.remove(i);
val r:Response = executed.remove(i);
returned.add(m, r);

m.signal(); > } } }

]

Communication between the implementation threads andrttlerlyingObject is
mediated by two maps. When a thread would like to interadt thieObject, it creates
a semaphore, registers the semaphoreaihled and waits on the semaphore. Upon
awakening, the thread removes the result figriurned and returns.

TheObject is serviced by a singlproxy thread which loops forever making one
of two nondeterministic choices. The proxy keeps two pevagaps. Upon receiving an
called invocation, the proxy moves the invocation frealled to received. Rather
than executing the received invocation, the proxy asks thel@to predict an arbitrary

18 Radha Jagadeesan and James Riely

invocationi and executes that instead, placing the resudtdieicuted. Once a invoca-
tion is bothreceived andexecuted, it may becomeeturned.

At the beginning of this section, we noted that the stacketec{. [1; ()"}
is QQC with respect to the specificatiof)* [~ 1; {¢ }*. How can such a trace possibly
be generated? The execution of the proxy proceeds as folldpan receipt of(; , the
proxy executes;, , storing the responsé . Upon receipt offl~ , the proxy executef
storing the responsk; . At this point [~ J; can be returned. Upon receipt 6f, the
proxy executeg; , storing the responsg . At this point both(;)* and{{}* can be
returned.

Theorem 5.5. The concurrent proxy is sound for QQC with retsfethe underlying
Object. Itis also complete for operational traces.

PROOF For soundness, note that proxy maintains the invarianthiesizes ofeceived
andexecuted are equal, and therefore the number of returned calls caer eaceed
the number that has been received. In addition, the numtileingfs added teeceived
always exceeds the number addeddaurned.

For completeness, suppose that tra¢e, t and let the sequence of namestin
be (a,aj, ..., ay, ay). Consider any total order on the eventssathat is consistent
with the order already presenttinLet (b], ..., bf,) be the order on the call actions in
this total order. Whei! arrives, addy to received and execut&/, placinga/ into
executed. FromTheorem 5|3 we know that whenever a response is rekjthere will
be enough prior invocations so that the required resporisbeviound inexecuted.O

5.4 Compositionality

We now prove compositionality for QQC, following the prooffinearizability in The-
orem 3.6. Below, we give some examples of the constructieengn the proof, ‘which
is more complex than the one required for linearizabilitycBl that ¢-) denotes partial
order difference.
Theorem 5.6. Lettand b be sequential traces.

Lets, § and $ be operational traces such that s s+s, and $ = s+ ;.

Fori € {1, 2}, suppose that each § g ti.

Then there exists a sequential trace {t; ||| t2) such that =g t.
PROOF As in the proof of Theorem 3.6, assuridg(t;) andids(ty) are disjoint, and
let the sequence of namestinbe (a7, a;, ..., a5, a,) and sequence of nametnbe
(b, bi, .. b}’,, b') Applying[Theorem 513 to the suppositien Cj;, t1, we have that
j < |{af | al =saj}|, and similarly¢ < |{b{ | bf =sbj }|. It suffices to construct an
interleavingt € (t1 ||| t2) such that whenevércontains a subsequence with names

? 1 W7 ! 7 ! - '
aj) aja bka bka bk+1v bk+17 LR bk+X’ bkJrX

then for everyk < ¢ < k+ x, we have

{af |a’ =sai} C {a/ | & =sb;}

! ?
and symmetrically for subsequences by, a aj, aHl, i1 gy, @ 1+y

such &, we know thatj + ¢ < |{a | &/ ésb,}U{b | b =sb;}|, as required.

Given

Between Linearizability and Quiescent Consistency 19

We now demonstrate the existence of suthzefine the seterge(&, b) as follows.
merge(d, €) = {&a} merge(€, b) = {b}
merge(da a}, bbi b}) > cbib} ifce merge(da &, b)
and{a’|al =saj} C {a' [a' =sb;}
merge(da’ a, bbjbj) > Caal if e merge(d, b} b))
and{b} | b =<b!} C (b} | b ><a}}
To demonstrate the existence of an approptiatesuffices to show thamerge(aj a;
... ahan, bibj ... b b)) is nonempty. By operationality, it must be the case thaeeith
(1) aj =sbj, in which case(a] | & =saj} C {a | &’ =sb;}, (2) b; =sa;, in which
case{bf | bf =sb;} C {b{ | bf =saj}, or (3)a; andb; are unordered, in which case
both conclusions hold. Therefore an appropriaggists. m|

Example 5.7.We demonstrate th@erge function defined in the proof above using the
following traces.

=0k t=0"00 {4 [
ss={"CNIKYE =101k
s=47 0" I I G R I
In the graph below, we draw an edge fraqto b, if {&] |af =sal} C {a] |a& =sb;},

indicating thato, may come aftea;. Edges fronby, to a; are similar. When an edge is
bidirectional, we use a dashed line.

'l O

]‘ RN YEN

R 1P A O Al

%

The following traces are derived from thesrge algorithm.
| PSR 0 (1 > A P QD H R G
Ml NrRITECHTE
1P S A PG MR R | >0 S >
1P P I S QD MR G 8 (R 14
Suppose instead that we have the followsng
s=4" "I
Then the graph and resulting traces are as follows.

A A G VR A

v

IR PSR A S A

000500 DI B 015 OO B
] 0° 05 0 05 ' I54° 15 COI T %
005 07 DI 15 CI A BB

.

©Coo~NOUODWNPE

20 Radha Jagadeesan and James Riely

In general, if one where to include the linear order from thecification (eg, froni™ 1
to (")7), the resulting graph might be cyclic, even if the dottedesigere removedl.

6 Stack example

We show that, under reasonable assumptionsNoftack is QQC. We extend this
argument to the elimination-tree stacks|ofi[13].

In proving that executions of olN-Stack are QQC, the key step is to generate the
corresponding specification trace. To do so, we considéotlmving instrumentation.

class Stack<N:Int> {
field b:[0..N-1] = 0
field s:Stack[]

; /I 1 balancer
0, 0O, ..., [01; /I N stacks of values
field e:[0..N-1] 0; /' 1 emitter
field q:Queuel[] (01, I, ..., 001; /I Nqueues of actions
method push(x:0bject) :Unit {
val i:[0..N-1];
atomic {i=b; b++;}
atomic {val v=s[i].push(x); q[i].add("push" x); emit(); return v;} }
method pop():0bject {
val i:[0..N-1];
atomic {i=b-1; b--;}
atomic {val v=s[i].pop(Q); qlil.add("pop" v); emit(); return v;} }
method emit():Unit {
while (qle]l.first()=""push" || gle-1].first()=""pop") {
if (qlel.first(O=""push") {print (qlel.remove()); e++;}
if (qle-1].first()=""pop") {print (qle-1].remove()); e--;} } } }

The state of the machine includes the values of the balaneard stackss. It also
includes queues to store the actions that have been executed on each stack and
emitter e, with the same range a&s which indicates the queue that should produce
the next specification action. The emitter prints any comeplg@ushes froms [e] and
any completed pops from[e-1]1. When the emitter prints a push, it removes it from
the queue and incremenés when it prints a pop, it removes it from the queue and
decrements. Emitter actions take place as soon as possible, and theeegontinues
until it has nothing left to do.

Atomic blocks can only execute concurrently if they do natdie the same shared
state. For the code in the introduction, this imposes anrdsdveen all executions
of the first atomic (line§18 anld1L2), since they touch the shasxiableb; order is
only imposed between executions of the second atomic thtataphe same stack. The
presence oémit indicates also imposes an order between all executiongafebond
atomic (lineg® anf13), sincanit touches the shared variakde This total order on
calls toemit ensures that the printed trace is indeed a stack trace, ague laelow.

Definition 6.1. Letabe a call topush or pop. Thentime; (a) is the time of the execution

of the first atomic statement in ti-Stack, andtimex (@) is the time of the execution

of the second atomic. Anearized traceof anN-Stack is one in which the invocations
are ordered consistently wittime; and the responses are ordered consistently with
timeo. O

Between Linearizability and Quiescent Consistency 21

For example, from the linearizatiof, [; 1*)* we knowtimey((j;) < timey([3)
andtimey(1*) < timez()*). Such a linearized trace is distinct from other linearizagio
of the same trace, such &5 [3)" 1", [(5 17)" and[; ()" 1".

The response order in the linearized trace is particulaglyificant. For example,
the linearization(j; [;1*)* [* 1; (")5 cannot result from the execution of &tack.

In this casea is pushed beforb and therefore the pop afcannot be ordered before the
pop ofb.

Example 6.2.Consider the following linearized trace of &62ack.
GC<h> I Co< >y,

Execution proceeds as follows. We show the atomic that isgoekecuted above the
arrow. Arrows without labels are executed withini t, atomically with the prior label.

On the right-hand side, we show any emitted actions, foltblwe the resulting state.
The initial state of the machine{®=0,e=0,s =[], []],a=[[], I])-

(b=0,e=0,s=[,[ll, a=I0,0)
L (b=1le=0s=[][l, a=I0,0)
— (b=0,e=0,s=[],[l, a=I[010)
=5 (b=0,e=0,s=[[],[b], a=1,[<>)
Ly p=Lle=0s=[] b, a=[<>
L (b=le=0s=[a b, a=[[{1] <> 1)
— 1 (b=1e=1s=[a,[b], q=I[<>]
— <> (b=1e=0,s=]@al, [b]], q=I.[])
25 (b=1e=0,s=[ca, [b],q=[G)],)
— () (b=1e=1s=][ca, [b]],q=[[[])
- (b=0,e=1s=[cal, [b]], g =], [])
ey (b=0,e=1,s=al, [b], q=1[C)], 0
— () (b=0,e=0,s=[al, [b)], a=1[[])
5 (b=le=0,s=[a,[b], a=1,)
% (b=Lle=0,s=[a[l], a=I[< %)
— <>y b=Le=1s=[a,[], q=I[0[)
= (b=0,e=1s=[a,[l], q=1].0)
Ly (b=0,e=1s=[,[1], a=I[1210
— [1(b=0e=0,s=[[],[l, a=I[0.1]) 0

o (b=0e=0s=[J(] a=[0
= (b=Lle=0s=[L a=[.0D
< (b=0e=0s=[][] a=[1G])

22 Radha Jagadeesan and James Riely

RA (b=0,e=0,s=[], [, q=[1.1G)])

5 (b=1e=0s=[,[d, a=[0[G"])

s b=1e=0s=[]1], a=[0,1G))l

Loy (b=0,e=0,s=[11], a=[0,[G)" il

RA (b=0,e=0,s=[], b, a=[0,[G)" i)
L, (b=1e=0s=[], b, a=I0,[G %G
Ly (=0e=0,s=[] b, a=I[01G %G N
25 (=0e=0,s=[],bd], a=I[[[G)" aG)
R (b=0,e=0,s=[0],[bd], q=[[[61"].[G)")5 G)
— 1 (b=0e=1s=[0,bd], q=I[0,[G)")z G I
— ()" (b=0,e=0,s=[[0],[bc], q=I[[[z G)

— (;(b=0,e=1s=[0],[bc], q=[[[G>)

— ()" (b=0,e=0,5=[0],bd], q=I[],[)]])

1 (b=0,e=0,s =01, [bd], q=1[[[;1"] ()]

— 11 (b=0,e=1,s=[01, bd], q=I, []))

— ()" (b=0,e=0,s =01, [bd], q=]],)

This produces the following linearized trasand specification.

s=[5C) O G I CH 17T
t=[51" GO Ca G 1)

After the push ot returns, we havg[1] = [(Z)" (")z (;)* (£)*]. When the firsf*
occurs, the first three actions in th€1] must be emitted. |

Lemma 6.4. Given an instrumented execution of afithek, the linearized trace of
the execution is QQC with the emitted specification.

PROOF SKETCH. Let us refer to a sequence likg)* ("); ({)* as achain A chain
is a sequence of calls that can be emitted from a single québewvany intervening
change tee. By[Theorem 5.8 suffices to show that after the execution o eomic,
the number of chains is bounded by the number of open calis fdlflows by induction
on the length of the instrumented execution. |

In light of Lemma 6.4, to show that thé-Stack is QQC, it suffices to show that
the emitted specification is indeed a stack specificatioriottimately, as observed in
[13], this fails to hold.

Example 6.5.As discussed ih Example 1.4, the linearized trégé" (;)* [¢ [* 131
generates the specificatidg 1" () [1; [¢ 1" . However, this specification is not a
stack trace. With some number of initial pushes, this exenus still possible: The lin-
earized tracely 1* (j)" [11" (50" [¢ [T 131" generates the specificatidg 1* (j)*

[A0 M I i I O

Between Linearizability and Quiescent Consistency 23

This problematic execution occurs because a push and pomerg at the first
stack, yet the pop retrieves a prior value: the pop taertakenthe push. We must
disallow such executions. It is not sufficient to requireyothiat pop operations block
on an empty stack.

Definition 6.6. An execution igproperly-poppedf for every pusha and popb that are
assigned the same stagkil,

time1(@) < timey(b) impliestimez(a) < timez(b). O

Lemma 6.7. If an execution of the instrumented#dck is properly-popped, then it
trace it prints is a stack trace.

PROOF SKETCH. It is sufficient to note that the execution of the emittetdais the
same pattern as the uninstrumenié@tack on a sequential execution. (This is only
true with proper popping.) The result follows since, as shaw[13], the sequential
execution of theN-Stack does simulate a stack. O

Theorem 6.8. Any properly-popped execution of afitek is QQC.
Proor By[Lemmas 6.4 and@.7. O

We have shown that for properly-popped executions (whempanmy not ignore a
concurrent push on the same stack)dhtack is QQC. As noted in the introduction,
we know of no analogous condition for increment/decremenntters.

In [13], Shavit and Touitou show that in a quiescent stateirthlimination-tree
stack reaches a state consistent with a stack. We now cotiséleelation between our
N-Stacks and these elimination-tree stacks.

Example 6.9.A depth-2 elimination-tree stack can be implemented udinggt atomic
booleans—topY), left (1) and right ¢)—and 4 linearizable stacks with addressées
01, 10 and11.

The addressof a stack in an deptld-elimination tree is a sequence dfbooleans,
indicating the value of the boolean at each level, going dawnanch of the tree. Both
push andpop toggle the booleans as they go down the tree, using an ateaitand
update. Ift = 0, thenpush setst = 1 and goes left. It = 0, thenpop setst = 1 and
goes right. The methods follow this same pattern down the trgil they reach the

24 Radha Jagadeesan and James Riely

bottom-level stack, at which point they perform the operatinitially all booleans are
set to 0. For example, one uninstrumented execution precesefbliows.

(t=0,1=0,s1=[],[]]). {r=05=[1[]])

Leyt=1,1=0,s =[]) (c=0s=[][]])
Ll =0,1=0,s =[]). (x=1s=[b,[]))
Llhe=10=1s=[aL[]), (r=1s=[b],[]))
Lle=0,(1=1s=[a.[]), (r=0s =[b], [d]]))
Llt=1,(1=0s1=1a, [c]), (r=0,s, = [[b], [d]]))

2ot =1,(1=1,s = e, [d]]), (r =0, s, = [[b], [d]}))
L5t =0,(1=0,s1 =[], [d]), (r =0, s, = [[b], [d]]))
Lt =1,(1=0,s1=a,[d]), (=15 = b, []))
Ly =01=1s=[a,[]), (r=1s=][b],[]))
Ase=101=1s=[a,[]),(x=0,s.=[].1]])
a5t =0,1=0,s1=[],[]])(&=0s=[[]])

This gives the tracey [1" [R17 [H1" [1) " % { X { X { X% { } whichis
QQC with respect toz 1" [[1" [1" [T G U R KR { X { }{ X. Our4-
Stack does not generate this execution trace; however, &tra2k does. In general,
our N%-Stack has strictly fewer behaviors than thebranching elimination-tree stack
of depthd. We leave open the question of wheth@&-dranching elimination-tree stack
of depthd has behaviors that not possible forldsgtack. |

The instrumented execution oNtbranching elimination-tree stack of depmth> 1
can be defined using the execution of elimination-tree staxdkdepthd — 1, using
the same strategy as olNrStack. While the balancer’s behavior is more general in
the composed system, the emitter’s is not: The emitter codatirely sequentialized,
therefore a 2-nested-branching emitter has the same behavior as afiabranching
emitter.

Theorem 6.10. Any properly-popped execution of a N-brampglimination-tree stack
of depth d is QQC.

PROOF SKETCH. Following the strategy ih Theorem 6.8, we need only proeecibr-
responding lemmas. In each case, the proof procedes bytiodund. In each case
the basis is the same: a depth 1 elimination tree stack idpmmiN-Stack.

The analogue df Lemma 6.4 follows, as before, by inductiothenlength of the
instrumented execution. An open call at degtmay initiate a new chain, but only in
onestack of depthd — 1.

For the analogue ¢f 8.7 it suffices to observe that the ersitbehavior is the same
if levelsd > 1 andd — 1 are flattened into a single level of sikg. This follows from
the atomicity of the emitter.]

REFERENCES 25

7 Conclusions

Quantitative quiescent consistency (QQ€a correctness criterion for concurrent data
structures that relaxes linearizability and refines gq@esconsistency. To the best of
our knowledge, it is the first such criterion to be proposed.

To show that QQC is a robust concept, we have provided thteenate charac-
terizations: (1) in the style of linearizability, (2) coimg the number of calls before a
return, and (3) using speculative flat combining. We have pisven compositionality
(in the style of Herlihy and Wing [9]) and the correctness afadstructures defined by
Aspnes, Herlihy, and Shavit [3] and Shavit and Touitou [13].

In order to establish the correctness of the eliminatiee-stack ofi[13], we had to
restrict attention to traces in which no popertakes push on the same stack. Arelated
constraint appears in a footnote 0f[[11]: “To keep thingsméenpop operations should
block until a matching push appears.” This, however, is trohg enough to guarantee
quiescent consistency as we have defined it. Our analysisdea full account: The
stack is QQC with the no-overtaking requirement and onlykilyequiescently consis-
tent without it.

As witnessed by the stack tra€g [* 13 (3)* ¥ inlsectiond, QQC does not enforce
causality. We have chosen not to treat causality in this paperder to present the
basic idea of QQC as clearly as possible. Causality is amgathal concept: One can
enforce causality iradditionto QQC. We have not done so here because causality
requires a notion of derivation over the underlying valiesyhich one distinguishes
public values (eg, base types) from secret values (eg, grsior nonces). For stacks,
derivation requires that the value returned by a pop musitbergublic or a previously
pushed secret.

Linearizability has proven to be a valuable foundation faggam verification tech-
niques. It remains to be seen if QQC can be of use in this regard

Linearizability is, at its corelinear. We have defined QQC in terms of general
partial orders, and yet the results reported here are statedns of sequential specifi-
cations. Partly we have done this so that we can relate theititafi of QQC to the vast
amount of existing work on linearizability. However, thengeal case is interesting.

Acknowledgements

Gustavo Petri participated in the early discussions whidhivated this work. Alan
Jeffrey and Corin Pitcher made useful comments on previandidate definitions for

QQC.

References

[1] Y. Afek, G. Korland, and E. Yanovsky, “Quasi-linearizlty: relaxed consis-
tency for improved concurrency,” I@PODIS ser. LNCS, vol. 6490, Springer,
2010, pp. 395-410.

[2] W. Aiello et al., “Supporting increment and decremenemgtions in balancing
networks,"Chicago J. Theor. Comput. Sc2000.

26

(3]
(4]
(5]
(6]

[7]
(8]
9]
(10]
(11]
[12]

(13]

REFERENCES

J. Aspnes, M. Herlihy, and N. Shavit, “Counting netwafks ACM vol. 41, no.
5, pp. 1020-1048, 1994.

C. Busch and M. Mavronicolas, “The strength of countirgworks (abstract),”
in PODC, J. E. Burns and Y. Moses, Eds., ACM, 1996, p. 311.

C. Dwork, M. Herlihy, and O. Waarts, “Contention in shdrenemory algo-
rithms,”J. ACM vol. 44, no. 6, pp. 779-805, 1997.

A. Haas et al., “Distributed queues in shared memory:tivale performance
and scalability through quantitative relaxation,”@onf. Computing Frontiets
ACM, 2013, p. 17.

D. Hendler, I. Incze, N. Shavit, and M. Tzafrir, “Flat cdwning and the synch-
ronization-parallelism tradeoff,” iSPAA 2010, pp. 355-364.

T. A. Henzinger, C. M. Kirsch, H. Payer, A. Sezgin, and AkSlova, “Quanti-
tative relaxation of concurrent data structuresP@PL, 2013, pp. 317-328.
M. Herlihy and J. M. Wing, “Linearizability: a correctss condition for concur-
rent objects,ACM TOPLASvol. 12, no. 3, pp. 463-492, 1990.

M. Herlihy and N. Shavit,The Art of Multiprocessor Programmingd/iorgan
Kaufmann, 2008.

N. Shavit, “Data structures in the multicore agégmmun. ACMvol. 54, no. 3,
pp. 76—84, Mar. 2011.

N. Shavit and D. Touitou, “Elimination trees and the straction of pools and
stacks (preliminary version),” i8PAA 1995, pp. 54—63.

—, “Elimination trees and the construction of pools atatcks, Theory Comput.
Syst, vol. 30, no. 6, pp. 645-670, 1997.

