CSC547: Type Systems for OO Languages

First-Order Imperative Calculi

Abadi and Cardelli, Chapter 11

Typing

Subject reduction
Typing

We just need to add type rules for let and clone, which are as expected:

(Val Clone) (where A is an object type)
If $E \vdash a : A$
then $E \vdash \text{clone}(a) : A$

(Val Let)
If $E \vdash a : A$
and $E, x : A \vdash b : B$
then $E \vdash \text{let } x = a \text{ in } b : B$

How can we type-check:

\[
let x = [\text{foo=0}] \text{ in } \\
\text{clone } (x).\text{foo}
\]
Subject reduction

In order to state subject reduction, we need some notation for type-checking a heap.

Write $E \models H$ when E gives the types of the pointers in heap H.

What is the type of the heap:

- fred \mapsto [first = "Fred", last = "Flintstone"],
- wilma \mapsto [first = "Wilma", last = "Flintstone"],
- both \mapsto [fst = fred, snd = wilma]

What about:

- bar \mapsto [a = foo]
- foo \mapsto [b = fold(Baz,bar)]

where $\text{Baz} \triangleq \mu(B)[a : [b : B]]$
Subject reduction

The type rule for heaps:

\[(\text{Heap Typing}) \text{ (when } E \equiv p_1 : A_1, \ldots, p_n : A_n)\]
If \(E \vdash O_1 : A_1 \)
... and \(E \vdash O_n : A_n \)
then \(E \models p_1 \mapsto O_1, \ldots, p_n \mapsto O_n \)

Write \(\models H \mid a : A \) when \(a \) has type \(A \) in heap \(H \):

\[(\text{Heap Val})\]
If \(E \models H \)
and \(E \vdash a : A \)
then \(\models H \mid a : A \)

We can now state subject reduction:

Proposition (Subject reduction)

If \(\models H \mid a : A \) and \(H \mid a \rightarrow H' \mid a' \) then \(\models H' \mid a' : A \).
Next 2 weeks

Jump into reading research papers...

Next week: *Featherweight Java* by Atsushi Igarashi, Benjamin Pierce and Philip Wadler.